ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: A cooling system and insulation concept for a Mach 5 cruise aircraft, using non-cryogenic fuel is presented. Catalytic endothermic reaction of petroleum fuel is used as the heat sink for engine cooling. A secondary closed-loop coolant circuit removes heat from the engine and transfers this heat to the catalytic reactor. Insulation on the engine flow path surfaces reduces the cooling requirements. A high temperature insulation system, which is capable of a surface temperature of 4,000 F, is used for the combustor and nozzle. A complete closed-loop cooling system design is shown in detail. Main features of this system include a fuel preheater, a catalytic fuel reactor, and engine wall cooling panels. A silicone-based liquid polymer, designed for extended use at 750 F, is used as the coolant. The preheater and reactor design are based on the results of recent experimental work. The cooling panels are designed using a thermal fluid analysis computer program, which was originally developed for the National Aero-Space Plane (NASP). Major components are analyzed structurally as well as thermally and weights are presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Johns Hopkins Univ., The 1990 JANNAF Propulsion Meeting, Volume 1; p 191-201
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The development of a three-dimensional thermal analysis model of the Lidar Atmospheric Sensing Experiment (LASE) is the subject of this paper. The use of an interactive computer graphics and finite element generation program to define the geometry information for the thermal model is discussed. The methods used in calculating the heat transfer parameters are explained. The results of the thermal analysis are given, and these results are compared with actual flight data.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-18
    Description: Previously cited in issue 5, p. 606, Accession no. A83-16533
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4560); 21; 156-161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A user's guide for the computer program that calculates the steady-state aerodynamic loads on the Shuttle thermal-protection tiles is presented. The main element in the program is the MITAS-II, Martin Marietta Interactive Thermal Analysis System. The MITAS-II is used to calculate the mass flow in a nine-tile model designed to simulate conditions duing a Shuttle flight. The procedures used to execute the program using the MITAS-II software are described. A list of the necessry software and data files along with a brief description of their functions is given. The format of the data file containing the surface pressure data is specified. The interpolation techniques used to calculate the pressure profile over the tile matrix are briefly described. In addition, the output from a sample run is explained. The actual output and the procedure file used to execute the program at NASA Langley Research Center on a CDC CYBER-175 are provided in the appendices.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-85724 , NAS 1.15:85724
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Description: An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.
    Keywords: SPACE TRANSPORTATION
    Type: Shuttle Performance: Lessons Learned, Pt. 2; p 891-912
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-2255 , L-15695 , NAS 1.60:2255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-2209 , L-15636 , NAS 1.60:2209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2423 , L-15893 , NAS 1.60:2423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.
    Keywords: Launch Vehicles and Launch Operations
    Type: AIAA Paper 99-4948 , 9th International Space Planes and Hypersonic Systems and Technologies Conference; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States|3rd Weakly Ionized Gases Workshop; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.
    Keywords: Launch Vehicles and Space Vehicles
    Type: AIAA Paper 99-4948 , International Space Planes and Hypersonic Systems and Technologies Conference; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...