ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-01
    Print ISSN: 0925-8574
    Electronic ISSN: 1872-6992
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: Traditional human factors design involves the development of human factors requirements based on a desire to accommodate a certain percentage of the intended user population. As the product is developed human factors evaluation involves comparison between the resulting design and the specifications. Sometimes performance metrics are involved that allow leniency in the design requirements given that the human performance result is satisfactory. Clearly such approaches may work but they give rise to uncertainty and negotiation. An alternative approach is to adopt human factors design rules that articulate a range of each design continuum over which there are varying outcome expectations and interactions with other variables, including time. These rules are based on a consensus of human factors specialists, designers, managers and customers. The International Space Station faces exactly this challenge in interior volume control, which is based on anthropometric, performance and subjective preference criteria. This paper describes the traditional approach and then proposes a rule-based alternative. The proposed rules involve spatial, temporal and importance dimensions. If successful this rule-based concept could be applied to many traditional human factors design variables and could lead to a more effective and efficient contribution of human factors input to the design process.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6967 , Human Systems 2001: Exploring the Human Frontier; Jun 20, 2001 - Jun 22, 2001; Houston, TX
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The purposes of this panel are to inform the human factors community regarding the challenges of designing the International Space Station (ISS) and to stimulate the broader human factors community into participating in the various basic and applied research opportunities associated with the ISS. This panel describes the variety of techniques used to plan and evaluate human factors for living and working in space. The panel members have contributed to many different aspects of the ISS design and operations. Architecture, equipment, and human physical performance requirements for various tasks have all been tailored to the requirements of operating in microgravity.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-7010 , Human Factors and Ergonomics Society Annual Conference; Oct 08, 2001 - Oct 12, 2001; Santa Monica, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Astronaut physical performance capabilities in micro gravity EV A or on planetary surfaces when encumbered by a life support suit and debilitated by a long exposure to micro gravity will be less than unencumbered pre flight capabilities. The big question addressed by human factors engineers is: what can the astronaut be expected to do on EVA or when we arrive at a planetary surface? A second question is: what aids to performance will be needed to enhance the human physical capability? These questions are important for a number of reasons. First it is necessary to carry out accurate planning of human physical demands to ensure that time and energy critical tasks can be carried out with confidence. Second it is important that the crew members (and their ground or planetary base monitors) have a realistic picture of their own capabilities, as excessive fatigue can lead to catastrophic failure. Third it is important to design appropriate equipment to enhance human sensory capabilities, locomotion, materials handling and manipulation. The evidence from physiological research points to musculoskeletal, cardiovascular and neurovestibular degradation during long duration exposure to micro gravity . The evidence from the biomechanics laboratory (and the Neutral Buoyancy Laboratory) points to a reduction in range of motion, strength and stamina when encumbered by a pressurized suit. The evidence from a long history of EVAs is that crewmembers are indeed restricted in their physical capabilities. There is a wealth of evidence in the literature on the causes and effects of degraded human performance in the laboratory, in sports and athletics, in industry and in other physically demanding jobs. One approach to this challenge is through biomechanical and performance modeling. Such models must be based on thorough task analysis, reliable human performance data from controlled studies, and functional extrapolations validated in analog contexts. The task analyses currently carried out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-8410 , AIAA Space 2004; Sep 28, 2004 - Sep 30, 2004; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Lighting is critical to human visual performance. On earth this problem is well understood and solutions are well defined and executed. Because the sun rises and sets on average every 45 minutes during Earth orbit, humans working in space must cope with ~ extremely dynamic lighting conditions varying from very low light conditions to severe glare and contrast conditions. For critical operations, it is essential that lighting conditions be predictable and manageable. Mission planners need to detelmine whether low-light video cameras are required or whether additional luminaires, or lamps, need to be flown . Crew and flight directors need to have up to date daylight orbit time lines showing the best and worst viewing conditions for sunlight and shadowing. Where applicable and possible, lighting conditions need to be part of crew training. In addition, it is desirable to optimize the quantity and quality of light because of the potential impacts on crew safety, delivery costs, electrical power and equipment maintainability for both exterior and interior conditions. Addressing these issues, an illumination modeling system has been developed in the Space Human Factors Laboratory at ASA Johnson Space Center. The system is the integration of a physically based ray-tracing package ("Radiance"), developed at the Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system developed by NASA and an extensive database of humans and their work environments. Measured and published data has been collected for exterior and interior surface reflectivity; luminaire beam spread distribution, color and intensity and video camera light sensitivity and has been associated with their corresponding geometric models. Selecting an eye-point and one or more light sources, including sun and earthshine, a ~ snapshot of the light energy reaching the surfaces or reaching the eye point is computed. This energy map is then used to extract the required information needed for useful predictions. Using a validated, comprehensive illumination model integrated with empirically derived data, predictions of lighting and viewing conditions have been successfully used for Shuttle and Space Station planning and assembly operations. It has successfully balanced the needs for adequate human performance with the utili zation of resources. Keywords: Modeling, ray tracing, luminaires, refl ectivity, luminance, illuminance.
    Keywords: Optics
    Type: JSC-CN-8009 , 14th IAA Human in Space Symposium: Predicing and Managing Lightning and Visibility for Human Operaitons in Space; May 18, 2003 - May 22, 2003; Banaff, Alberta; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...