ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In a chilling-sensitive plant, cucumber, chilling of leaves in the light results in irreversible damage to PSI. Recent in vitro studies suggested that hydroxyl radicals, which are formed in the presence of H2O2 and reduced Fe-S centers, are involved in the PSI inhibition. We therefore examined this possibility in vivo. Chilling of leaves at 5°C in the light caused a temporary increase in H2O2 concentration, which was probably due to the net H2O2 production in vivo. The activity, measured at 5°C, of the thylakoid ascorbate peroxidase (APX), a key enzyme of the H2O2-scavenging system, was about 20% of that measured at 25°C. The isolated thylakoids retaining high thylakoid APX activity did not show light-dependent net H2O2 production at 25°C. However, at 5°C, net production of H2O2 was observed. Since the rate of electron flow to molecular oxygen in the isolated thylakoids was ca 5 mmol e− mol−1 Chl s−1 at 5°C, the H2O2-scavenging capacity was below this level. When intact leaves were illuminated at 5°C at an irradiance of 100 µmol m−2 s−1, the rate of electron transport through PSII was ca 20 mmol e− mol−1 Chl s−1 and more than 80% of QA was in the reduced state. Since thylakoids are uncoupled in cucumber leaves at 5°C in the light. ATP is not formed and energy dissipation in the form of heat is suppressed. Therefore, the electron flow to molecular oxygen would be greater than 5 mmol e− mol−1 Chl s−1. Moreover, under such conditions, components in the electron transport chain, including Fe-S centers in PSI, were probably reduced. These features indicate that, when cucumber leaves are chilled in the light, hydroxyl radicals can be produced by the Fenton reaction and cause damage to PSI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Ecological research 4 (1989), S. 131-144 
    ISSN: 1440-1703
    Keywords: Coastal dune ; Plant distribution ; Poor nutrient ; Seedling establishment ; Summer drought
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fate ofDigitaria adscendens andEleusine indica seedlings under field conditions and their responses to salt spray, drought and nutrients were experimentally investigated in order to evaluate the possible mechanisms controlling the different distributions of the two species in coastal sand dune areas. Salt spray produced no apparent positive effect on the growth or survival of both species. Seeds of each species germinated well in the field, although 80% ofE. indica seedlings died during a summer drought and surviving seedlings neither grew nor bore fruit. The mortality ofD. adscendens seedlings due to the drought was less than 10% and the survivors mostly bore fruit by the end of the growth season. No major difference in the sublethal water saturation deficit was noticed between the two species. However,D. adscendens individuals extended their roots into the deep sandy soil to a much greater extent in water-stressed conditions than in well watered conditions, whereasE. indica showed no such behavior. Additional watering in a dune environment did not help the growth ofE. indica seedlings, but additional nutrients had a markedly stimulatory effect.D. adscendens maintained its growth and fruition with much smaller amounts of nutrients thanE. indica. Soil nitrogen content at a site whereE. indica andD. adscendens were distributed sympatrically was higher than that at a site where onlyD. adscendens was present. Based on these findings, it is proposed thatE. indica seedlings are unable to become established because of their lower resistance to summer drought and the poor nutrient conditions present in a coastal rear sand dune habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-08-01
    Print ISSN: 0912-3814
    Electronic ISSN: 1440-1703
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-10-29
    Description: Photoinactivation of photosystem II (PSII), the light–induced loss of ability to evolve oxygen, is an inevitable event during normal photosynthesis, exacerbated by saturating light but counteracted by repair via new protein synthesis. The photoinactivation of PSII is dependent on the dosage of light: in the absence of repair, typically one PSII is photoinactivated per 10 7 photons, although the exact quantum yield of photoinactivation is modulated by a number of factors, and decreases as fewer active PSII targets are available. PSII complexes initially appear to be photoinactivated independently; however, when less than 30% functional PSII complexes remain, they seem to be protected by strongly dissipative PSII reaction centres in several plant species examined so far, a mechanism which we term ‘inactive PSII–mediated quenching‘. This mechanism appears to require a pH gradient across the photosynthetic membrane for its optimal operation. The residual fraction of functional PSII complexes may, in turn, aid in the recovery of photoinactivated PSII complexes when conditions become less severe. This mechanism may be important for the photosynthetic apparatus in extreme environments such as those experienced by over–wintering evergreen plants, desert plants exposed to drought and full sunlight and shade plants in sustained sunlight.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...