ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 275-279 
    ISSN: 1573-0972
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A strain of broad-spectrum, mercury-resistant Pseudomonas putida FB1 was used to remove mercury as the gaseous element (Hg(0)) from a continuous axenic culture, fed with a synthetic medium containing 1 mg Hg l-1 as HgCl2. Mercury determinations were performed in steady-state cultures using various culture fractions [whole culture, filtered supernatant, bacterial cells (dry wt), recovery trap liquid] in order to determine the removal efficiency at different dilution rates (from 0.1 to 3.0 day-1). The removal efficiency ranged from 99.2% to 99.8%, and the residual Hg was maintained below 5 μ l-1 (the maximum allowable concentration of Hg in liquid wastes according to Italian law) at a dilution rate of 1.0 day-1, corresponding to a Hg flux of 40 μg l-1 h-1. Hg accumulation by cell biomass was negligible for dilution rates under 1.0 day-1. A progressive accumulation of Hg, both in the liquid phase and in cells, occurred at a higher dilution rate (3.0 day-1; close to washout), corresponding to a Hg concentration of 25 μg g-1 (dry wt). The estimated Km and Vmax for Hg reduction were 0.241 mg l-1 and 9.5 mg g-1 h-1, respectively. In batch experiments maximum Hg removal occurred at the optimum growth temperature (28°C) of P. putida. The maximum recovery of Hg in the liquid trap was 78%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...