ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 48 (1986), S. 125-136 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Galerkin's finite element-Laplace transform technique (GAFELTTE) has been used to study transient temperature distribution in human skin and subcutaneous tissues. This study incorporates heat conduction, heat carried by perfusion of blood in the capillary beds and metabolic heat generation in the tissues. Different values of various quantities have been considered in all three parts, namely epidermis, dermis and subcutaneous tissues, depending on physiological considerations. The GAFELTTE provides interface temperatures for a wide range of the values of skin surface temperatures. These values have been used to obtain temperature profiles in the region considered. Steady-state temperature distribution has been deduced from the solution obtained by GAFELTTE and has been compared with the results obtained by using different methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1416
    Keywords: Mathematical model ; Irregular interfaces ; Metabolic heat production ; Evaporation ; Finite element technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract A mathematical model for the study of the effects of blood flow, metabolic heat production, various environmental conditions and the presence of a curved boundary on the temperature distribution (TD) in a two dimensional model of human skin and subcutaneous tissues (SST) is presented. Based on physiological properties, the interfaces between epidermis-dermis (IED) and dermis-subcutaneous tissues (IDS) have been considered to be irregular and the regions of these layers have been divided into 109 triangular elements of various sizes which are connected with each other by 70 nodes. The results computed from this thermobiological mathematical model, using Galerkin's finite element technique, have been exhibited graphically. The effects of various environmental conditions, blood flow and metabolic heat production are found to be nonuniform on TD at the nodes situated at the same depth in SST. This nonuniformity in TD almost disappears at the nodes situated in dermis nearest to IDS except for the two of the six combinations, considered in the present study, in which highest values of blood flow and metabolic heat production have been considered. The rate of fall of temperature with respect to thickness (towards the skin surface) is higher at the straight boundary (SB) than at the curved boundary (CB). The temperature increases with respect to width (from SB to CB) in epidermis and dermis but decreases in subcutaneous tissues. This increase or decrease of temperature is more pronounced at the nodes situated near to, or at CB. The trend of these temperature profiles in SST reflects the dependence of TD not only on the environmental conditions and biophysical variables but also on the geometry of SST.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 28 (1990), S. 355-364 
    ISSN: 1432-1416
    Keywords: Temperature distribution ; Epidermis ; Dermis ; Subcutaneous tissues ; Radiation ; Sweating ; Confluent hypergeometric functions ; Airy's functions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Exact mathematical solutions in terms of confluent hypergeometric and Airy's functions are obtained to study the steady state temperature distributions in human skin and subcutaneous tissues (SST). It is assumed that the skin is exposed to an air environment and heat transfer from the skin occurs by convection, radiation and evaporation. A mathematical model of the SST, accounting for heat conduction, perfusion of the capillary beds and metabolic heat productions of the dermis and subcutaneous tissues, has been solved to obtain interface temperatures for a wide range of environmental temperatures, rates of evaporation of sweat, wind speeds and relative humidities. The solutions provide inter-relationships between interface temperatures, thermal conductivities, metabolic heat production, blood perfusion, thicknesses of various layers of SST and ambient temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: An Ultrasonic drilling/coring mechanism (USDC) has been developed for future NASA exploration missions.
    Type: Ultrasonic Industry Association (UIA) Meeting; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...