ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 16; 1; p. 182-189.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A global algorithm for transforming rotation matrices to Euler parameters is presented. Although it has no apparent computational or numerical advantage over the known algorithms, it elucidates the relationship between the rotation matrix form and the Euler parameter form. It employs the singular-value decomposition, a numerically ideal algorithm involving orthogonal transformations. Attitude parameterization is reviewed and an analytical framework is provided.
    Keywords: NUMERICAL ANALYSIS
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 15; 5, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)
    Keywords: AIRCRAFT COMMUNICATIONS AND NAVIGATION
    Type: AGARD, Integrated and Multi-Function Navigation; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110411 , NAS 1.15:110411 , A-962310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-06
    Description: This paper presents a design approach and basic algorithms for a future system that can perform aircraft conflict resolution, arrival scheduling and convective weather avoidance with a high level of autonomy in terminal area airspace. Such a system, located on the ground, is intended to solve autonomously the major problems currently handled manually by human controllers. It has the potential to accommodate higher traffic levels and a mix of conventional and unmanned aerial vehicles with reduced dependency on controllers. The main objective of this paper is to describe the fundamental trajectory and scheduling algorithms that provide the foundation for an autonomous system of the future. These algorithms generate trajectories that are free of conflicts with other traffic, avoid convective weather if present, and provide scheduled times for landing with specified in-trail spacings. The maneuvers the algorithms generate to resolve separation and spacing conflicts include speed, horizontal path, and altitude changes. Furthermore, a method for reassigning arrival aircraft to alternate runways in order to reduce delays is also included. The algorithms generate conflict free trajectories for terminal area traffic, comprised primarily of arrivals and departures to and from multiple airports. Examples of problems solved and performance statistics from a fast-time simulation using simulated traffic of arrivals and departures at the Dallas/Fort Worth International Airport and Dallas Love Field are described.
    Keywords: Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN22021 , Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (ISSN 0954-4100) (e-ISSN 2041-3025); 230; 9; 1762-1779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The method proposed by Hopfield and Tank for using the Hopfield neural network with continuous valued neurons to solve the traveling salesman problem is tested by simulation. Several researchers have apparently been unable to successfully repeat the numerical simulation documented by Hopfield and Tank. However, as suggested to the author by Adams, it appears that the reason for those difficulties is that a key parameter value is reported erroneously (by four orders of magnitude) in the original paper. When a reasonable value is used for that parameter, the network performs generally as claimed. Additionally, a new method of using feedback to control the input bias currents to the amplifiers is proposed and successfully tested. This eliminates the need to set the input currents by trial and error.
    Keywords: CYBERNETICS
    Type: NASA-TM-101047 , A-88275 , NAS 1.15:101047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN28584 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.
    Keywords: Aircraft Communications and Navigation; Air Transportation and Safety
    Type: NASA/TM-2013-216520 , ARC-E-DAA-TN8784
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2013-216034 , ARC-E-DAA-TN5498
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: An open-source scalar package and associated software tools have been developed in the Scala programming language, including plotting tools based on the free GRACE plotting package. The scalar package represents physical scalars and can help to prevent errors involving physical units in engineering and scientific computation. The scalar package includes a complete implementation of the standard SI metric system of units and many common non-metric units. The design also allows users to easily de ne a specialized or reduced set of physical units for any particular application or domain. The scalar package can be used in two different modes: one mode provides unit compatibility checking but is slower, and the other mode bypasses the compatibility checks but is much faster and still prevents the most common type of unit error. Switching between the two modes requires no changes in the user's code, making it convenient and usable with no significant performance penalty for even the most computationally intensive applications.
    Keywords: Air Transportation and Safety; Computer Programming and Software
    Type: ARC-E-DAA-TN65819
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...