ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-17
    Description: Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Claesson, Marcus J -- Jeffery, Ian B -- Conde, Susana -- Power, Susan E -- O'Connor, Eibhlis M -- Cusack, Siobhan -- Harris, Hugh M B -- Coakley, Mairead -- Lakshminarayanan, Bhuvaneswari -- O'Sullivan, Orla -- Fitzgerald, Gerald F -- Deane, Jennifer -- O'Connor, Michael -- Harnedy, Norma -- O'Connor, Kieran -- O'Mahony, Denis -- van Sinderen, Douwe -- Wallace, Martina -- Brennan, Lorraine -- Stanton, Catherine -- Marchesi, Julian R -- Fitzgerald, Anthony P -- Shanahan, Fergus -- Hill, Colin -- Ross, R Paul -- O'Toole, Paul W -- England -- Nature. 2012 Aug 9;488(7410):178-84. doi: 10.1038/nature11319.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University College Cork, Ireland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22797518" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Aging/*physiology ; Cohort Studies ; Diet/*statistics & numerical data ; Diet Surveys ; Feces/*microbiology ; Fruit ; Geriatric Assessment ; Health ; *Health Status ; Health Surveys ; Homes for the Aged ; Hospitals, Community ; Humans ; Intestines/*microbiology ; Meat ; Metagenome/*physiology ; Rehabilitation Centers ; Surveys and Questionnaires ; Vegetables
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: The potential for the gut microbiota to affect health has a particular relevance for older individuals. This is because the microbiota may modulate aging-related changes in innate immunity, sarcopaenia, and cognitive function, all of which are elements of frailty. Both cell culture-dependent and -independent studies show that the gut microbiota of older people differs from that of younger adults. There is no chronological threshold or age at which the composition of the microbiota suddenly alters; rather, changes occur gradually with time. Our detailed analyses have separated the microbiota into groups associated with age, long-term residential care, habitual diet, and degree of retention of a core microbiome. We are beginning to understand how these groups change with aging and how they relate to clinical phenotypes. These data provide a framework for analyzing microbiota-health associations, distinguishing correlation from causation, identifying microbiota interaction with physiological aging processes, and developing microbiota-based health surveillance for older adults.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Toole, Paul W -- Jeffery, Ian B -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1214-5. doi: 10.1126/science.aac8469.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Microbiology and APC Microbiome Institute, University College Cork, Cork T12 Y337, Ireland. pwotoole@ucc.ie. ; School of Microbiology and APC Microbiome Institute, University College Cork, Cork T12 Y337, Ireland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785481" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; *Aging ; Food Habits ; Frail Elderly ; *Gastrointestinal Microbiome ; Health ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-04
    Description: Increasing evidence from sequence data from various environments, including the human gut, suggests the existence of a previously unknown putative seventh order of methanogens. The first genomic data from members of this lineage, Methanomassiliicoccus luminyensis and " Candidatus Methanomethylophilus alvus," provide insights into its evolutionary history and metabolic features. Phylogenetic analysis of ribosomal proteins robustly indicates a monophyletic group independent of any previously known methanogenic order, which shares ancestry with the Marine Benthic Group D, the Marine Group II, the DHVE2 group, and the Thermoplasmatales. This phylogenetic position, along with the analysis of enzymes involved in core methanogenesis, strengthens a single ancient origin of methanogenesis in the Euryarchaeota and indicates further multiple independent losses of this metabolism in nonmethanogenic lineages than previously suggested. Genomic analysis revealed an unprecedented loss of the genes coding for the first six steps of methanogenesis from H 2 /CO 2 and the oxidative part of methylotrophic methanogenesis, consistent with the fact that M. luminyensis and " Ca. M. alvus" are obligate H 2 -dependent methylotrophic methanogens. Genomic data also suggest that these methanogens may use a large panel of methylated compounds. Phylogenetic analysis including homologs retrieved from environmental samples indicates that methylotrophic methanogenesis (regardless of dependency on H 2 ) is not restricted to gut representatives but may be an ancestral characteristic of the whole order, and possibly also of ancient origin in the Euryarchaeota. 16S rRNA and McrA trees show that this new order of methanogens is very diverse and occupies environments highly relevant for methane production, therefore representing a key lineage to fully understand the diversity and evolution of methanogenesis.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-06
    Description: Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated “tad2003.” Mutational analysis demonstrated that the tad2003 gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...