ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-05
    Description: Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barson, Nicola J -- Aykanat, Tutku -- Hindar, Kjetil -- Baranski, Matthew -- Bolstad, Geir H -- Fiske, Peder -- Jacq, Celeste -- Jensen, Arne J -- Johnston, Susan E -- Karlsson, Sten -- Kent, Matthew -- Moen, Thomas -- Niemela, Eero -- Nome, Torfinn -- Naesje, Tor F -- Orell, Panu -- Romakkaniemi, Atso -- Saegrov, Harald -- Urdal, Kurt -- Erkinaro, Jaakko -- Lien, Sigbjorn -- Primmer, Craig R -- England -- Nature. 2015 Dec 17;528(7582):405-8. doi: 10.1038/nature16062. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 As, Norway. ; Department of Biology, University of Turku, FI-20014, Finland. ; Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway. ; Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1431 As, Norway. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK. ; AquaGen, NO-7462 Trondheim, Norway. ; Natural Resources Institute Finland, Oulu, FI-90014, Finland. ; Radgivende Biologer, NO-5003 Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536110" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; Biological Evolution ; Body Size/*genetics ; Female ; Fish Proteins/*genetics/metabolism ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Growth/*genetics ; Humans ; Male ; Models, Biological ; Phenotype ; Reproduction/genetics/physiology ; Salmo salar/*genetics ; *Sex Characteristics ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉A long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (〈i〉Salmo salar〈/i〉). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how higher reproductive success in local spawners compared to dispersers may act in natural populations to drive population divergence and promote local adaptation over microgeographic spatial scales without clear morphological differences between populations.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-15
    Description: We report on the data from an extensive monitoring programme for the occurrence of escaped farmed Atlantic salmon (Salmo salar) in Norwegian rivers for 25 years. This monitoring started as a 3-year research programme in 1989 and was followed by management authorities to cover the proportional occurrence of escaped farmed Atlantic salmon in rivers during summer and autumn before spawning. Farmed salmon were distinguished from wild salmon by growth patterns in the scales. More than 362 000 salmon were registered by this programme. Here we present the historical data on escaped farmed salmon in catches 1989–2013 and a methodology for calculating averages across summer and autumn capture in rivers, across years and in regions, using weighted and unweighted observations. Catches of escaped farmed salmon show large spatial and temporal variation, with the early 1990s and early 2000s being periods of large influxes of farmed fish. Western Norway and parts of middle and northern Norway have shown particularly high incidences of escaped farmed fish. Because escaped farmed Atlantic salmon are competing and interbreeding with wild Atlantic salmon, as well as increasing the spread of disease-causing agents, they have become a major force driving the abundance and evolution of Atlantic salmon.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...