ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-25
    Description: Focal amplifications of chromosome 3p13-3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leucci, Eleonora -- Vendramin, Roberto -- Spinazzi, Marco -- Laurette, Patrick -- Fiers, Mark -- Wouters, Jasper -- Radaelli, Enrico -- Eyckerman, Sven -- Leonelli, Carina -- Vanderheyden, Katrien -- Rogiers, Aljosja -- Hermans, Els -- Baatsen, Pieter -- Aerts, Stein -- Amant, Frederic -- Van Aelst, Stefan -- van den Oord, Joost -- de Strooper, Bart -- Davidson, Irwin -- Lafontaine, Denis L J -- Gevaert, Kris -- Vandesompele, Jo -- Mestdagh, Pieter -- Marine, Jean-Christophe -- England -- Nature. 2016 Mar 24;531(7595):518-22. doi: 10.1038/nature17161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory For Molecular Cancer Biology, Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium. ; Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Rue Laurent Fries 1, 67404 Illkirch, France. ; Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Herestraat 49, 3000 Leuven, Belgium. ; Mouse Histopathology Core Facility, Center for the Biology of Disease, VIB-KULeuven, Herestraat 49, 3000 Leuven, Belgium. ; Medical Biotechnology Center, VIB, Albert Baertsoenkaai 3, 9000 Gent, Belgium. ; Department of Biochemistry, Gent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium. ; Center for Medical Genetics, Gent University, De Pintelaan 185, 9000 Gent, Belgium. ; Cancer Research Institute Gent, Gent University, De Pintelaan 185, 9000 Gent, Belgium. ; Gynaecologische Oncologie, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. ; Laboratory of Computational Biology, Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium. ; Department of Applied Mathematics, Computer Science and Statistics, Gent University, De Pintelaan 185, 9000 Gent, Belgium. ; Department of Mathematics, KU Leuven, Celestijnenlann 200B, 3001 Leuven, Belgium. ; RNA Molecular Biology, Center for Microscopy and Molecular Imaging, Universite Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041 Charleroi, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27008969" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogenesis/genetics/pathology ; Cell Lineage ; Cell Proliferation ; Cell Survival ; Chromosomes, Human, Pair 3/genetics ; Clone Cells/metabolism/pathology ; Female ; Gene Amplification/genetics ; Gene Knockdown Techniques ; Humans ; Melanoma/*genetics/*pathology/therapy ; Mice ; Microphthalmia-Associated Transcription Factor/genetics ; Mitochondria/genetics/metabolism/pathology ; Mitochondrial Proteins/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Molecular Targeted Therapy ; Oncogenes/*genetics ; RNA, Long Noncoding/*genetics/therapeutic use ; SOXE Transcription Factors/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 15 (1994), S. 489-492 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 14 (1993), S. 446-451 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Absence of dystrophin in mdx muscles may render the muscle more susceptible to damage when submitted to high stress levels. To test this, typically slow (soleus) and fast (EDL) limb muscles of dystrophic (mdx) and normal (C57BL/10) mice were submitted (in vitro) to a series of isometric contractions, followed by a series of contractions with stretches. Muscle injury was assessed by monitoring the force signal. Membrane damage was evaluated by bathing the muscle in Procion Red, a dye that does not penetrate intact fibres, and subsequent analysis by light microscopy. After isometric contractions, only a very small force drop (〈3% of maximal isometric force) was observed which indicated that no injury had occurred in soleus and EDL muscles in either mdx or C57 strains. After contractions with a stretch, a force drop of 10% was observed in soleus muscles from both strains and in EDL muscles from C57 mice. However, in mdx mice EDL muscles displayed an irreversible force drop of 40–60%. Histological analysis of the muscles indicates that force drop is associated with membrane damage. These results show that EDL muscles from mdx mice are more vulnerable than their controls, supporting the structural role hypothesis for dystrophin. Furthermore, they suggest that contractions with stretches may contribute to the muscle damage and degeneration observed in DMD-patients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 11 (1990), S. 445-452 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Tropomyosin localization in striated muscle was studied by means of immunoelectron microscopy. Polyclonal and monoclonal antibodies to tropomyosin were allowed to diffuse into mechanically skinned single fibres dissected from frog semitendinosus muscle. Antibodies produced transverse I-band stripes with the expected periodicity of 38 nm. However, some differences were revealed among the various antibodies. While polyclonal antibodies generally showed 23 stripes, monoclonal antibodies showed an extra 24th stripe immediately adjacent to the Z-line, implying some structural/functional uniqueness of this terminal tropomyosin. Furthermore, the stripes did not always lie parallel to the Z-line. When the Z-line was straight or slightly skewed, the stripes generally were parallel to it. However, when Z-line skew was more severe, the stripes remained perpendicular to the fibre axis, indifferent to the Z-line skew. This may imply that the coupling of tropomyosin to the thin filament is not tight. Finally, the monoclonal antibodies themselves exerted an anomalous effect on the Z-line, apparently extracting or shifting some of its mass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-06
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...