ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: SAE PAPER 740931
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: World Hydrogen Energy Conference; Mar 01, 1976 - Mar 03, 1976; Miami Beach, FL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: A study was initiated on the feasibility of using the alkali metal carbonate - bi-carbonate solid-gas reaction to remove carbon dioxide from the atmosphere of an EVA life support system. The program successfully demonstrates that carbon dioxide concentrations could be maintained below 0.1 mole per cent using this chemistry. Further a practical method for distributing the carbonates in a coherent sheet form capable of repeated regeneration (50 cycles) at modest temperatures (423 K), without loss in activity was also demonstrated. Sufficiently high reaction rates were shown to be possible with the carbonate - bi-carbonate system such that EVA hardware could be readily designed. Experimental and design data were presented on the basis of which two practical units were designed. In addition to conventional thermally regenerative systems very compact units using ambient temperature cyclic vacuum regeneration may also be feasible. For a one man - 8 hour EVA unit regenerated thermally at the base ship a system volume of 14 liters is estimated.
    Keywords: BIOTECHNOLOGY
    Type: NASA-CR-114661
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: NASA-CR-137919
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The design and development of a prototype carbon dioxide absorber using potassium carbonate (K2CO3) is described. Absorbers are constructed of thin, porous sheets of supported K2CO3 that are spirally wound to form a cylindrical reactor. Axial gas passages are formed between the porous sheets by corrugated screen material. Carbon dioxide and water in an enclosed life support system atmosphere react with potassium carbonate to form potassium bicarbonate. The potassium carbonate is regenerated by heating the potassium bicarbonate to 150 C at ambient pressure. The extravehicular mission design conditions are for one man for 8 h. Results are shown for a subunit test module investigating the effects of heat release, length-to-diameter ratio, and active cooling upon performance. The most important effect upon carbon dioxide removal is the temperature of the potassium carbonate.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: ASME PAPER 77-ENAS-54 , Intersociety Conference on Environmental Systems; Jul 11, 1977 - Jul 14, 1977; San Francisco, CA; US
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...