ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: This paper presents a review of future experimental needs in low-speed aerodynamic research. Emphasis is on fixed wind aircraft and the review uses the anticipated technical needs of subsonic transport aircraft and supersonic transport aircraft to establish and prioritize future low-speed experimental needs and directions. These technical needs, combined with a continuing improvement in computational capability, suggest changes in the experimental capabilities and adjustments in the use of existing capabilities. Three factors emerge that will have a major influence on the future directions for low-speed aerodynamic research: a recognition of the significance of three-dimensional high-lift aerodynamics, the increasing importance of aeroacoustics, and additional emphasis on the importance of propulsion/airframe integration. These analyses are combined with a review of the status of experimental capabilities in low-speed aerodynamic research to suggest future directions in the development and utilization of advanced instrumentation, test techniques, and test capabilities.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-0157
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The present inlet design concept for an indraft wind tunnel, which is especially suited to applications for which a specific test section flow quality is required with minimum inlet size, employs a cascade or vaneset to control flow at the inlet plane, so that test section total pressure variation is minimized. Potential flow panel methods, together with empirical pressure loss predictions, are used to predict inlet cascade performance. This concept has been used to develop an alternative inlet design for the 80 x 120-ft wind tunnel at NASA Ames Research Center. Experimental results show that a short length/diameter ratio wind tunnel inlet furnishing atmospheric wind isolation and uniform test section flow can be designed.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TM-88226 , A-85392 , NAS 1.15:88226
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TM-89413 , A-87039 , NAS 1.15:89413
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The emergence of high-lift aerodynamics is reviewed as one of the key technologies to the development of future subsonic transport aircraft. Airport congestion, community noise, economic competitiveness, and safety - the drivers that make high-lift an important technology - are discussed. Attention is given to the potentially synergistic integration of high-lift aerodynamics with two other advanced technologies: ultra-high bypass ratio turbofan engines and hybrid laminar flow control. A brief review of the ongoing high-lift research program at Ames Research Center is presented. Suggestions for future research directions are made with particular emphasis on the development and validation of computational codes and design methods. It is concluded that the technology of high-lift aerodynamics analysis and design should move boldly into the realm of high Reynolds number, three-dimensional flows.
    Keywords: AERODYNAMICS
    Type: California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.
    Keywords: Aircraft Propulsion and Power
    Type: International Powered Lift Conference; Sep 02, 1998 - Sep 04, 1998; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Results of flow visualization and tail buffett studies conducted on a full-scale production F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex are presented. Test conditions range between 20 degrees and 40 degrees angle of attack, 16 degrees and -16 degrees side-slip angle, and up to a Mach number of 0.15 (corresponding to a Reynolds number of 12.3 x 10(exp 6) based on mean aerodynamic chord). Flow visualization results include both surface and off-surface techniques that examine forebody, canopy, leading-edge extension, and wing flow fields. Unsteady pressures measured at 96 locations on the port tail fin are used to determine the effect of a removable leading-edge extension fence on tail buffet loads at high angle of attack. Analyses and comparisons include tail fin bending moment and wave velocities on the tail surface. Repeatability and scaling issues are assessed through comparison with measurements from previous full-scale tests and several small-scales tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: May 24, 1994 - May 26, 1994; Ottawa; Canada|May 31, 1994; Medley, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: A method introduced by Betz in 1932 relates the vortex sheet shed by one side of a lifting wing to the rolled-up vortex far downstream. The Betz rollup theory came into active use during the 1970's when the hazard posed by vortex wakes of subsonic transport aircraft became of concern at airports. Even though the method involves several simplifying assumptions, it provides insight into the rollup process and has proven to be a useful and reliable tool for the analysis and diagnosis of lift-generated wakes. As part of an ongoing effort to develop improved guidelines for the rollup process of complex vortex wakes, the research described is directed at the study of the two vortex invariants not used in the Betz formulation, and to find out if they can be used to determine the sequence of rollup or the center of vortices where rollup begins. It is found that the two unused vortex invariants are both conserved during rollup, but that they do not yield any information or guidance on rollup sequence or on the location of vortex centers. It is also found that the invariant for energy can be used to determine the rolled-up structure of vortices but the structure differs negligibly from that predicted by use of the invariant for the second moment of circulation.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN4998 , American Helicopter Society 68th Annual Forum; May 01, 2012 - May 03, 2012; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: When making noise measurements of sound sources in flow using microphones immersed in an air stream or wind tunnel, the factor limiting the dynamic range of the measurement is, in many cases, the noise caused by the flow over the microphone. To lower this self-noise, and to protect the microphone diaphragm, an aerodynamic microphone forebody is usually mounted on the tip of the omnidirectional microphone. The microphone probe is then pointed into the wind stream. Even with a microphone forebody, however, the self-noise persists, prompting further research in the area of microphone forebody design for flow-induced self-noise reduction. The magnitude and frequency characteristics of in-flow microphone probe self-noise is dependent upon the exterior shape of the probe and on the level of turbulence in the onset flow, among other things. Several recent studies present new designs for microphone forebodies, some showing the forbodies' self-noise characteristics when used in a given facility. However, these self-noise characteristics may change when the probes are used in different facilities. The present paper will present results of an experimental investigation to determine an empirical relationship between flow turbulence and self-noise levels for several microphone forebody shapes as a function of frequency. As a result, the microphone probe self-noise for these probes will be known as a function of freestream turbulence, and knowing the freestream turbulence spectra for a given facility, the probe self-noise can be predicted. Flow-induced microphone self-noise is believed to be related to the freestream. turbulence by three separate mechanisms. The first mechanism is produced by large scale, as compared to the probe size, turbulence which appears to the probe as a variation in the angle of attack of the freestream. flow. This apparent angle of attack variation causes the pressure along the probe surface to fluctuate, and at the location of the sensor orifice this fluctuating surface pressure is sensed by the diaphragm as noise. The second mechanism is caused by the convection of smaller sized turbulence, on the order of the probe cross-section, which passes nearby or strikes the probe giving rise to a fluctuating pressure at the sensor orifice. And, the third mechanism is related to fine scale turbulence through its effects on boundary layer growth and transition to a turbulent boundary layer. The method for relating the probe self-noise to the freestream turbulence will be based on the method of K. J. Young5 from Boeing, who developed the technique and presented flow noise results for a Bruel & Kjaer Type 0385, 1/4 inch (6.35 mm) nose cone. The experimental set-up used in the present experiment is similar to that of Young and is described in the present paper. Finally, flow noise predictions are made using the empirical correlations. These predictions are then compared with actual flow noise measurements made in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center.
    Keywords: Acoustics
    Type: 1998 AIAA/CEAS Joint Acoustics Conference; Jun 02, 1998 - Jun 04, 1998; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: The current study computationally examines one of the principle three-dimensional features of the flow over a high-lift system, the flow associated with a flap edge. Structured, overset grids were used in conjunction with an incompressible Navier-Stokes solver to compute the flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth model. Specific interest was given to the details of the flow in the vicinity of the flap edge, so the geometry was simplified to isolate this region. The geometry consisted of an unswept wing, which spanned a wind tunnel test section, equipped with a single element flap. Two flap configurations were computed; a full-span and a half-span Fowler flap. The chord based Reynolds number was 3.7 million for all cases. The results for the full-span flap agreed with two-dimensional experimental results and verified the method. Grid topologies and related issues for the half-span flap geometry are discussed. Results of the half-span flap case are presented with emphasis on the flow features associated with the flap edge.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 95-0185 , 6th International Symposium on Computational Fluid Dynamics; Sep 04, 1995 - Sep 08, 1995; Lake Tahoe, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...