ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147.
    Beschreibung: Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends (Oliver et al., 2018), understanding their physical mechanisms and relationships with climate modes (e.g., Holbrook et al., 2019), climate projections (Frölicher et al., 2018), and understanding the biological impacts for organisms and ecosystem function and services (e.g., Smale et al., 2019). By using sea surface temperature percentiles, temperature anomalies can be quantified based on their local variability and account for the broad range of temperature regimes in different marine environments. For temperatures exceeding a 90th-percentile threshold beyond a period of 5-days, marine heatwaves can be classified into categories based on their intensity (Hobday et al., 2018). While these recent advances have provided the framework for understanding key aspects of marine heatwaves, a challenge lies ahead for effective integration of physical and biological knowledge for prediction of marine heatwaves and their ecological impacts. This Research Topic is motivated by the need to understand the mechanisms for how marine heatwaves develop and the biological responses to thermal stress events. This Research Topic is a collection of 18 research articles and three review articles aimed at advancing our knowledge of marine heatwaves within four themes. These themes include methods for detecting marine heatwaves, understanding their physical mechanisms, seasonal forecasting and climate projections, and ecological impacts.
    Beschreibung: We thank the contributing authors, reviewers, and the editorial staff at Frontiers in Marine Science for their support in producing this issue. We thank the Marine Heatwaves Working Group (http://www.marineheatwaves.org/) for inspiration and discussions. This special issue stemmed from the session on Advances in Understanding Marine Heat Waves and Their Impacts at the 2018 Ocean Sciences meeting (Portland, USA).
    Schlagwort(e): Marine heatwaves ; Extreme events ; Ocean and atmosphere interactions ; Marine ecosystems ; Marine resources ; Climate change ; Climate variability ; Climate prediction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schlegel, R. W., Oliver, E. C. J., & Chen, K. Drivers of marine heatwaves in the Northwest Atlantic: the role of air-sea interaction during onset and decline. Frontiers in Marine Science, 8, (2021): 627970, https://doi.org/10.3389/fmars.2021.627970
    Beschreibung: Marine heatwaves (MHWs) are increasing in duration and intensity at a global scale and are projected to continue to increase due to the anthropogenic warming of the climate. Because MHWs may have drastic impacts on fisheries and other marine goods and services, there is a growing interest in understanding the predictability and developing practical predictions of these events. A necessary step toward prediction is to develop a better understanding of the drivers and processes responsible for the development of MHWs. Prior research has shown that air–sea heat flux and ocean advection across sharp thermal gradients are common physical processes governing these anomalous events. In this study we apply various statistical analyses and employ the self-organizing map (SOM) technique to determine specifically which of the many candidate physical processes, informed by a theoretical mixed-layer heat budget, have the most pronounced effect on the onset and/or decline of MHWs on the Northwest Atlantic continental shelf. It was found that latent heat flux is the most common driver of the onset of MHWs. Mixed layer depth (MLD) also strongly modulates the onset of MHWs. During the decay of MHWs, atmospheric forcing does not explain the evolution of the MHWs well, suggesting that oceanic processes are important in the decay of MHWs. The SOM analysis revealed three primary synoptic scale patterns during MHWs: low-pressure cyclonic Autumn-Winter systems, high-pressure anti-cyclonic Spring-Summer blocking, and mild but long-lasting Summer blocking. Our results show that nearly half of past MHWs on the Northwest Atlantic shelf are initiated by positive heat flux anomaly into the ocean, but less than one fifth of MHWs decay due to this process, suggesting that oceanic processes, e.g., advection and mixing are the primary driver for the decay of most MHWs.
    Beschreibung: RS was supported by the Ocean Frontier Institute International Postdoctoral Fellowship hosted jointly by Dalhousie University and Woods Hole Oceanographic Institution, through an award from the Canada First Research Excellence Fund. EO was funded through the National Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2018-05255 and Marine Environmental Observation, Prediction, and Response Network Early Career Faculty Grant 1-02-02-059.1. KC was supported by National Oceanic and Atmospheric Administration Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program under grant NA19OAR4320074 and Climate Variability and Predictability (CVP) program under grant NA20OAR4310398.
    Schlagwort(e): Marine heatwaves ; Air-sea heat flux ; Drivers ; Northwest Atlantic ; SST ; Physical oceanography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-01-01
    Print ISSN: 0003-0007
    Digitale ISSN: 1520-0477
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-02-01
    Print ISSN: 2169-9275
    Digitale ISSN: 2169-9291
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-03-23
    Beschreibung: The winter of 2014/15 brought record snow totals to portions of southeastern New England. Additionally, over 90% of Boston Logan Airport snowfall during the winter fell during phases 7 and 8 of the Madden–Julian oscillation (MJO) index. This motivated the authors to investigate potential connections between intense southeastern New England snowstorms and the MJO in the historical record. It was found that southeastern New England snowfall, measured since the 1930s at several stations in the region, recorded higher than average winter snowfalls when enhanced MJO convection was located over the western Pacific and the Western Hemisphere (phases 7–8). Similarly, snowfall was suppressed when enhanced MJO convection was located over the Maritime Continent (phases 4–5). The MJO also modulates the frequency of nor’easters, which contribute the majority of New England’s snowfall, as measured by reanalysis-derived cyclone tracks. These tracks were more numerous during the same MJO phases that lead to enhanced snowfall, and they were less common during phases with less snowfall.
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-05-10
    Print ISSN: 0930-7575
    Digitale ISSN: 1432-0894
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-05-22
    Beschreibung: Recent marine heatwave (MHW) events in the Tasman Sea have had dramatic impacts on the ecosystems, fisheries, and aquaculture off Tasmania’s east coast. However, our understanding of the large-scale drivers (forcing) and potential predictability of MHW events in this region off southeast Australia is still in its infancy. Here, we investigate the role of oceanic Rossby waves forced in the interior South Pacific on observed MHW occurrences off southeast Australia from 1994 to 2016, including the extreme 2015/16 MHW event. First, we used an upper-ocean heat budget analysis to show that 51% of these historical Tasman Sea MHWs were primarily due to increased East Australian Current (EAC) Extension poleward transports through the region. Second, we used lagged correlation analysis to empirically connect the EAC Extension intensification to incoming westward-propagating sea surface height (SSH) anomalies from the interior South Pacific. Third, we dynamically analyzed these SSH anomalies using simple process-based baroclinic and barotropic Rossby wave models forced by wind stress curl changes across the South Pacific. Finally, we show that associated monthly SSH changes around New Zealand may be a useful index of western Tasman Sea MHW predictability, with a lead time of 2–3 years. In conclusion, our findings demonstrate that there is potential predictability of advection-dominated MHW event likelihoods in the EAC Extension region up to several years in advance, due to the deterministic contribution from baroclinic and barotropic Rossby waves in modulating the EAC Extension transports.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-07-28
    Digitale ISSN: 2662-138X
    Thema: Energietechnik , Geologie und Paläontologie
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2018-10-01
    Print ISSN: 2169-9275
    Digitale ISSN: 2169-9291
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-10-28
    Beschreibung: Rainfall in tropical Australia is a critical resource for the agricultural sector. However, its high variability implores improvements in our understanding of its variability. Australian tropical rainfall is influenced by both the Madden-Julian Oscillation (MJO) on intraseasonal time scales and El Niño-Southern Oscillation (ENSO) on interannual time scales. This study examines the joint relationship between the MJO, ENSO, and tropical Australian rainfall variability. We analyze daily precipitation data from stations across tropical Australia during the wet season (November to April). The wet season rainfall response to the MJO is found to be greater during El Niño than La Niña. We demonstrate that this relationship is not due to the statistical relationship between the MJO and ENSO indices but instead due to differences in how the MJO modulates the large-scale circulation during El Niño versus during La Niña. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...