ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-25
    Description: Northward ocean heat transport (OHT) plays a key role in Arctic climate variability and change. Unforced climate model simulations suggest that at decadal and longer timescales, strengthened Atlantic meridional overturning circulation (AMOC) is correlated with increased OHT into the Arctic. Yet greenhouse gas forced simulations predict increased Arctic OHT while AMOC weakens. Here we partition OHT changes into contributions from dynamic circulation changes and thermodynamic temperature advection, as well as meridional overturning and gyre changes. We find that under decadal-scale internal variability, strengthened AMOC converges heat in the subpolar gyre; anomalous heat is advected into the Arctic by both time mean circulations and strengthened gyre circulations. Under greenhouse gas forcing, weakened AMOC reduces subpolar gyre heat convergence; yet Arctic OHT increases as mean overturning and strengthened gyre circulations advect warmed surface waters. Thus, caution should be exercised when inferring Arctic OHT from AMOC, as the relationship between OHT and AMOC changes depends on whether they are internally generated or externally forced. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-22
    Description: Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...