ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: The possibility of rebound for colliding cloud drops was measured by determining the collection efficiency. The collection efficiency for 17 size pairs of relatively uncharged drops in over 500 experimental runs was measured using two techniques. The collection efficiencies fall in a narrow range of 0.60 to 0.70 even though the collection drop was varied between 63 and 326 microns and the size ratio from 0.05 to 0.33. In addition the measured values of collection efficiencies (Epsilon) were below the computed values of collision efficiencies (E) for rigid spheres. Therefore it was concluded that rebound was occurring for these sizes since inferred coalescence (epsilon = Epsilon/E) efficiencies are about 0.6 yo 0.8. At a very small size ratio (r/R = p = 0.05, R = 326 microns) the coalescence efficiency inferred is in good agreement with the experimental findings for a supported collector drop. At somewhat large size ratios the inferred values of epsilon are well above results of supported drop experiments, but show a slight correspondence in collected drop size dependency to two models of drop rebound. At a large size ratio (p = 0.73, R = 275) the inferred coalescence efficiency is significantly different from all previous results.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: JPL Proc. of the 2d Intern. Colloq. on Drops and Bubbles; p 247-254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A three-dimensional diagnostic model for the assimilation of satellite and conventional meteorological data is developed with the variational method of undetermined multipliers. Gridded fields of data from different type, quality, location, and measurement source are weighted according to measurement accuracy and merged using least squares criteria so that the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation are satisfied. The model is used to compare multivariate variational objective analyses with and without satellite data with initial analyses and the observations through criteria that were determined by the dynamical constraints, the observations, and pattern recognition. It is also shown that the diagnoses of local tendencies of the horizontal velocity components are in good comparison with the observed patterns and tendencies calculated with unadjusted data. In addition, it is found that the day-night difference in TOVS biases are statistically different (95% confidence) at most levels. Also developed is a hybrid nonlinear sigma vertical coordinate that eliminates hydrostatic truncation error in the middle and upper troposphere and reduces truncation error in the lower troposphere. Finally, it is found that the technique used to grid the initial data causes boundary effects to intrude into the interior of the analysis a distance equal to the average separation between observations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-3981 , NAS 1.26:3981
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A variational data assimilation method for the study of cyclone-scale weather systems is described. The variational data assimilation method is to incorporate primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. The variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. The development of variational model 1 which contains two nonlinear horizontal momentum equations, an integrated continuity equation, and a hydrostatic equation is examined. Examples applying the assimilation model to rawinsonde and satellite data are presented.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...