ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Almahata Sitta (AhS) is the first meteorite to originate from an asteroid (2008 TC3) that had been studied in space before it hit Earth [1,2]. It is also unique because the fallen fragments comprise a variety of types: approximately 69% ureilites (achondrites) and 31% chondrites [3]. Two models have been proposed for the origin 2008 TC3: 1) an accretionary model [3,4]; or 2) a regolith model [5,6]. Typical polymict ureilites are interpreted to represent regolith, and contain a few % foreign clasts [7,8]. The most common are dark (CC matrix-like) clasts similar to those in many meteoritic breccias [9]. A variety of other chondrites, as well as achondrites (angrites), have also been reported [7,9,10]. We have been working to determine the full diversity of these clasts [10-13] for comparison with AhS. We discuss implications for mixing of materials in the early solar system and the origin of 2008 TC3.
    Keywords: Astrophysics
    Type: JSC-CN-35762 , Asteroid-Meteorite Connections Workshop; Apr 21, 2016 - Apr 22, 2016; Los Angeles,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Royal Meteorological Society, Quarterly Journal (ISSN 0035-9009); 119; 509; p. 121-152.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Previous searches for moons around Vesta have found nothing to an upper limit of 22.5 magnitude, that corresponds to 44 +/- 4 m diameter assuming the same albedo as Vesta. The Dawn mission's approach phase has dedicated satellite search observations consisting of two mosaic sequences bracketing the first observations of a complete rotation of Vesta scheduled for early July, 2011. In addition, we use the approach optical navigation image sequences for initial satellite searches. We will report any findings from these observations, and upper limits of magnitude and size.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.4470.2011 , 74th Annual Meeting of the Meteoritical Society; Aug 08, 2011 - Aug 12, 2011; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D10314, doi:10.1029/2006JD007659.
    Description: Precision requirements are determined for space-based column-averaged CO2 dry air mole fraction (XCO2) data. These requirements result from an assessment of spatial and temporal gradients in XCO2, the relationship between XCO2 precision and surface CO2 flux uncertainties inferred from inversions of the XCO2 data, and the effects of XCO2 biases on the fidelity of CO2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these XCO2 data precision requirements.
    Description: This work was supported by the Orbiting Carbon Observatory (OCO) project through NASA’s Earth System Science Pathfinder (ESSP) program. SCO and JTR were supported by a NASA IDS grant (NAG5-9462) to JTR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Atmospheric Chemistry and Physics 10 (2010): 4145-4165, doi:10.5194/acp-10-4145-2010.
    Description: We quantify how well column-integrated CO2 measurements from the Orbiting Carbon Observatory (OCO) should be able to constrain surface CO2 fluxes, given the presence of various error sources. We use variational data assimilation to optimize weekly fluxes at a 2°×5° resolution (lat/lon) using simulated data averaged across each model grid box overflight (typically every ~33 s). Grid-scale simulations of this sort have been carried out before for OCO using simplified assumptions for the measurement error. Here, we more accurately describe the OCO measurements in two ways. First, we use new estimates of the single-sounding retrieval uncertainty and averaging kernel, both computed as a function of surface type, solar zenith angle, aerosol optical depth, and pointing mode (nadir vs. glint). Second, we collapse the information content of all valid retrievals from each grid box crossing into an equivalent multi-sounding measurement uncertainty, factoring in both time/space error correlations and data rejection due to clouds and thick aerosols. Finally, we examine the impact of three types of systematic errors: measurement biases due to aerosols, transport errors, and mistuning errors caused by assuming incorrect statistics. When only random measurement errors are considered, both nadir- and glint-mode data give error reductions over the land of ~45% for the weekly fluxes, and ~65% for seasonal fluxes. Systematic errors reduce both the magnitude and spatial extent of these improvements by about a factor of two, however. Improvements nearly as large are achieved over the ocean using glint-mode data, but are degraded even more by the systematic errors. Our ability to identify and remove systematic errors in both the column retrievals and atmospheric assimilations will thus be critical for maximizing the usefulness of the OCO data.
    Description: SD and DB acknowledge support from NASA grant NNG06G127G. DB also acknowledges initial support from NOAA Grant NA16GP2935.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...