ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4423-4429 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of azomethane following absorption of a single 351 nm photon was studied using the method of molecular beam photofragment translational spectroscopy. The dissociation was observed to proceed via cleavage of both C–N bonds to yield N2 and two methyl radicals. The measured time-of-flight spectra show evidence that the two methyl radicals possess unequal velocities in the azomethane center of mass suggesting that the dissociation is not symmetric. The angles between the asymptotic center-of-mass velocities for all three fragments are strongly correlated, implying that the methyldiazenyl radical (CH3N2) intermediate decomposes within a fraction of its rotational period. We conclude, therefore, that the dissociation is concerted, not stepwise as was inferred from recent time-resolved experiments. The overall translational energy distributions for all the photofragments in the azomethane center of mass reveal that an average of 60% of the total available energy appears as translation. A possible mechanism, consistent with the experimental findings, will be proposed and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 4447-4460 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The technique of molecular beam photofragment translational spectroscopy has been used to study the dissociation of acetone following S1←S0 (248 nm) and S2←S0 (193 nm) excitation. Excitation at 248 nm resulted in the production of CH3 and CH3CO with 14.2±1.0 kcal/mole on average of the available energy appearing as translation of the photofragments. Comparison of the measured 〈ET〉 with values reported at 266 nm suggest that the energy partitioning is dominated by the exit barrier caused by an avoided crossing on the potential energy surface. A substantial fraction (30±4%) of the nascent acetyl radicals from the primary dissociation contain sufficient energy to undergo spontaneous secondary decomposition. From the onset of the truncation of the CH3CO P(ET) a threshold of 17.8±3.0 kcal/mole for the dissociation of the acetyl radical has been determined in agreement with recent results on the photodissociation of acetyl chloride. The translational energy release in the dissociation of CH3CO closely matches the experimentally determined exit barrier. At 193 nm the only observed dissociation pathway was the formation of two methyl radicals and carbon monoxide. On average ∼38% of the available energy is found in product translation suggesting that significant internal energy resides in the nascent CH3 fragments consistent with the results of Hall et al. [J. Chem. Phys. 94, 4182 (1991)]. We conclude that the dynamics and energy partitioning for dissociation at 193 nm is similar to that at 248 nm. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 792-798 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation dynamics of methyl radical have been investigated at 193.3 nm using photofragment translational spectroscopy. The formation of CH2 and H(2S) was the only dissociation pathway observed. Although it is not possible to assign the spin state of the methylene unambiguously, we believe that methylene is produced predominately in the a˜ 1A1 excited state. The translational energy distribution of the products is peaked at ∼13 kcal/mole which is consistent with the magnitude of the exit barrier on the excited state potential energy surface. The breadth of the distribution suggests that the methyl radicals dissociate from a wide range of geometries. From the photofragment angular distribution an anisotropy parameter of β=−0.9±0.1 was determined. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 60-76 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Nascent Doppler profiles of CN (X 2Σ+) fragments from the 193 nm photodissociation of NCCN have been measured using high-resolution transient frequency modulated (FM) absorption spectroscopy. This new method is highly suited for Doppler spectroscopy of nascent photoproducts. The experimental line shapes suggest an asymptotic available energy of 5300±100 cm−1 and are well described by a model in which the available energy is partitioned between a statistical reservoir (4700 cm−1) and a modest exit barrier (600 cm−1). We have determined state dependent v⋅j correlations. A trend of j becoming increasingly perpendicular to v for the higher rotational states is in accord with phase space theory, although the observed correlations are more than twice as strong. The v⋅j correlations can be quantitatively modeled by further restricting the phase space model with an approximate conservation of the K-quantum number, the projection of total angular momentum about the linear axis of NCCN. Global rotational and vibrational product distributions have also been measured. The highest accessible rotational states are underpopulated, compared to a phase space calculation. The global vibrational distribution is substantially colder than the phase space theory predictions. Vibrational branching ratios for coincident fragments have been measured as a function of the detected CN state from a close analysis of high signal-to-noise Doppler profiles. The correlated vibrational distribution, P(v1,v2), shows an excess of vibrationless coincident fragments, at the expense of dissociation to give one ground state and one vibrationally excited CN fragment. The correlated formation of two vibrationally excited CN fragments is as likely as the phase space prediction, yet the formation of v=2 is strongly suppressed. The fragment vector and scalar correlations provide a highly detailed view of the loose transition state typical for reactions well described by statistical reaction theories. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 2129-2135 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a method for recovering Doppler broadened absorption line shapes from frequency modulated (FM) line spectra. The method of analysis is calibrated and demonstrated with thermalized CN radicals produced by photodissociation of cyanogen (NCCN), probed on the A–X system near 800 nm with a frequency modulated Ti: sapphire ring laser. Nonthermal, Doppler broadened lines from translationally nascent photofragments can also be recovered by direct transformations of experimental FM line profiles acquired with a time resolution exceeding 100 ns. The superior signal-to-noise afforded by FM spectroscopy, relative to other direct absorption methods, should encourage the application of transient FM spectroscopy to problems in photoinitiated reaction dynamics. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 1864-1874 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The quantum state-counting phase space theory commonly used to describe "barrierless'' dissociation is recast in a helicity basis to calculate photofragment v⋅j correlations. Counting pairs of fragment states with specific angular momentum projection numbers on the relative velocity provides a simple connection between angular momentum conservation and the v⋅j correlation, which is not so evident in the conventional basis for phase space state counts. The upper bound on the orbital angular momentum, l, imposed by the centrifugal barrier cannot be included simply in the helicity basis, where l is not a good quantum number. Two approaches for an exact calculation of the v⋅j correlation including the centrifugal barrier are described to address this point, although the simpler helicity state count with no centrifugal barrier correction is remarkably good in many cases. An application to the photodissociation of NCCN is consistent with recent classical phase space calculations of Klippenstein and Cline. The experimentally observed vector correlation exceeds the phase space theory prediction. We take this as evidence of incomplete mixing of the K states of the linear parent molecule at the transition state, corresponding to an evolution of the body-fixed projection number K into the total helicity of the fragment pair state. The average over a thermal distribution of parent angular momentum in the special case of a linear molecule does not significantly reduce the v⋅j correlation below that computed for total J=0. Predictions of the v⋅j correlations for the unimolecular dissociation of NCNO and CH2CO are also provided. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 51 (2000), S. 243-274 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Explicitly time-dependent implementations of optical frequency modulation spectroscopy have been recently applied to a wide range of problems in chemical physics. We provide a brief description of the methodology, with an emphasis on its intrinsic advantages for interrogating transient species. Several examples highlight the application of the technique to high-resolution absorption spectra of free radicals, rate measurements for gas-phase reactions, and Doppler spectroscopy of the gas-phase products of photoinitiated reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 5771-5779 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation dynamics of CH2BrCl have been studied using resonance-enhanced multiphoton ionization with time-of-flight mass spectrometry. Polarization dependent time-of-flight profiles were collected for a range of wavelengths from 248 to 268 nm, corresponding to the red wing of the absorption spectrum. Forward convolution fits to the data have provided translational energy distributions and anisotropy parameters over the entire wavelength range for both Br(2P3/2) and Br*(2P1/2). The average translational energies for the Br and Br* channels are 20 and 23 kcal/mol, respectively. The measured anisotropy parameters indicate that both channels arise preferentially from a parallel transition and that the relative contribution of this transition increases with decreasing wavelength. Nonadiabatic transitions appear to play a smaller role in CH2BrCl dissociation than in its monohalogenated analogues, specifically CH3Br. We suggest that this difference is the result of the intrinsic Cs symmetry and lower radial velocity of CH2BrCl, and it is discussed in terms of a one-dimensional Landau–Zener model. A C–Br bond dissociation energy of 67.5 kcal/mol in CH2BrCl was also calculated using ab initio methods at the MP2/cc-pVtz//MP2/cc-pVdz level. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 2862-2871 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ab initio molecular orbital calculations were performed toward the determination of the potential energy surface for the unimolecular ground-state dissociation of vinylcyanide. Reaction pathways for the three- and four-center elimination reactions of HCN and H2, as well as migration and radical elimination channels of H and CN, were examined. MP2 gradient geometry optimizations and QCISD(T) single point energy calculations were performed for all the relevant product species and transition states. The results are compared to the analogous unimolecular dissociation of vinylchloride which has been theoretically investigated by Morokuma and co-workers [J. Chem. Phys. 100, 8976 (1994)]. The unimolecular rates for all reaction channels have been calculated using Rice–Ramsperger–Kassel–Marcus (RRKM) theory employing ab initio transition state energies and MP2 vibrational frequencies. Our calculations indicate that the elimination of H2 and HCN preferentially proceed via three-center transition states. We also find that H-migration reactions are rapid, suggesting that substantial H-atom scrambling precedes dissociation. This result is important for the interpretation of several isotopic substitution measurements which are all consistent with exclusive three-center elimination of H2 and HCN. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 1346-1352 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Infrared diode laser absorption spectroscopy has been used to measure the CD3 radical photoproducts formed in the 193 and 222 nm photodissociation of dimethyl sulfoxide-d6. Quantum yields of CD3 have been determined to be 1.4±0.1 at 193 nm and 1.2±0.2 at 222 nm, compared to 2.0 for acetone-d6 at 193 nm. An analysis of transient waveforms reflecting the vibrational relaxation and radical recombination kinetics also yields an estimate of the nascent CD3 vibrational energy content by determining the fraction of total CD3 initially produced in the vibrationless state. The nascent CD3 population in the vibrational ground state decreases in order for the following photodissociation systems: CD3I at 248 nm, DMSO-d6 at 193 and 222 nm and acetone-d6 at 193 nm. The DMSO results are in good agreement with recent photofragment translational spectroscopy results and support a stepwise mechanism for the dissociation of DMSO at both wavelengths. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...