ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2021-03-29
    Description: Risk assessment of CO2 storage requires the use of geophysical monitoring techniques to quantify changes in selected reservoir properties such as CO2 saturation, pore pressure and porosity. Conformance monitoring and associated decision-making rest upon the quantified properties derived from geophysical data, with uncertainty assessment. A general framework combining seismic and controlled source electromagnetic inversions with rock physics inversion is proposed with fully Bayesian formulations for proper quantification of uncertainty. The Bayesian rock physics inversion rests upon two stages. First, a search stage consists in exploring the model space and deriving models with associated probability density function (PDF). Second, an appraisal or importance sampling stage is used as a "correction" step to ensure that the full model space is explored and that the estimated posterior PDF can be used to derive quantities like marginal probability densities. Both steps are based on the neighbourhood algorithm. The approach does not require any linearization of the rock physics model or assumption about the model parameters distribution. After describing the CO2 storage context, the available data at the Sleipner field before and after CO2 injection (baseline and monitor), and the rock physics models, we perform an extended sensitivity study. We show that prior information is crucial, especially in the monitor case. We demonstrate that joint inversion of seismic and CSEM data is also key to quantify CO2 saturations properly. We finally apply the full inversion strategy to real data from Sleipner. We obtain rock frame moduli, porosity, saturation and patchiness exponent distributions and associated uncertainties along a 1D profile before and after injection. The results are consistent with geology knowledge and reservoir simulations, i.e., that the CO2 saturations are larger under the caprock confirming the CO2 upward migration by buoyancy effect. The estimates of patchiness exponent have a larger uncertainty, suggesting semi-patchy mixing behaviour.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...