ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-12-01
    Print ISSN: 1530-6984
    Electronic ISSN: 1530-6992
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-09-07
    Print ISSN: 0957-4484
    Electronic ISSN: 1361-6528
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30207 , NASA Tech Briefs, April 2003; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The term vortobots denotes proposed swimming robots that would have dimensions as small as micrometers or even nanometers and that would move in swarms through fluids by generating and exploiting vortices in a cooperative manner. Vortobots were conceived as means of exploring confined or otherwise inaccessible fluid environments: they are expected to be especially attractive for biomedical uses like examining the interiors of blood vessels. The main advantage of the vortobot concept, relative to other concepts for swimming microscopic robots, is that the mechanisms for locomotion would be relatively simple and, therefore, could be miniaturized more easily. For example, only a simple spinning paddle would be required to generate a vortex around a vortobot (see Figure 1). The difficulty is that a smart swarming and cooperative control algorithm would be necessary for purposeful locomotion. This necessity arises because, as a consequence of basic principles of vortex dynamics, an isolated single vortex cannot move by itself because its induced flow at the center is zero; however, a vortex can move other vortices by the induced flow. By cleverly adjusting the strength and sign of each member in a group of vortices, the group can achieve net translational motion in the preferred direction through cooperation. Figure 2 presents two simple examples that serve to illustrate the principle of cooperative motion of vortobots. For the sake of simplicity, these examples are based on an idealized two-dimensional potential flow of an inviscid, incompressible liquid. The example of the upper part of the figure is of two vortices of equal magnitude and opposite sign. The centers of the vortices would move along parallel paths. The example of the lower part of the figure is of two vortices of the same magnitude and sign. In this case, both vortices would move in a circle in diametrically opposite positions. More complex motions can be obtained by introducing more vortices (or pairs of vortices) and choosing different vortex strengths and orientations.
    Keywords: Man/System Technology and Life Support
    Type: NPO-21188 , NASA Tech Briefs, May 2005; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Electromechanical resonators of a proposed type would comprise single carbon nanotubes suspended between electrodes (see Figure 1). Depending on the nanotube length, diameter, and tension, these devices will resonate at frequencies in a range from megahertz through gigahertz. Like the carbon-nanotube resonators described in the preceding article, these devices will exhibit high quality factors (Q values), will be compatible with integration with electronic circuits, and, unlike similar devices made from silicone and silicone carbide, will have tunable resonant frequencies as high as several GHz. An efficient electromechanical transduction method for the carbon nanotube resonators is provided by the previously observed variation of carbon nanotube length with charge injection. It was found that injection of electrons or holes, respectively, lengthens or shortens carbon nanotubes, by amounts of the order of a percent at bias levels of a few volts. The charge-dependent length change also enables a simple and direct means of tuning the resonant frequency by varying the DC bias and hence the tension along the tube, much like tuning a guitar string. In its basic form, the invention is a tunable high-Q resonator based on a suspended carbon nanotube bridge with attached electrodes (see Figure 1). An applied DC bias controls the tension and thus the frequency of resonance. If one were to superimpose a radio-frequency (RF) bias on the DC bias, then the resulting rapid variation in tension or length would set the tube into vibration. If, on the other hand, the carbon nanotube were to be set into vibration by interaction between an incident RF electric field and electric charges in the nanotube, then the vibration would give rise to an RF signal output that is proportional to the RF amplitude at the resonance frequency. Because the transduction mechanism is extremely sensitive and the active volume is only a few nanometers in diameter, this device is not well suited for use as a microwave power device. Instead, this carbon nanotube mechanical resonator would be useful primarily as part of a highly precise, sensitive, frequency-selective detector. An array of such devices featuring nanotubes of different lengths (and thus different frequencies) could be made to operate as a highspeed spectrum analyzer (see Figure 2)
    Keywords: Man/System Technology and Life Support
    Type: NPO-30206 , NASA Tech Briefs, April 2003; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.
    Keywords: Nonmetallic Materials
    Type: NPO-30659 , NASA Tech Briefs, December 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-24
    Description: A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Nanowicks are dense mats of nanoscale fibers that are expected to enable the development of a variety of novel capillary pumps, filters, and fluidic control devices. Nanowicks make it possible obtain a variety of novel effects, including capillary pressures orders of magnitude greater than those afforded by microscale and conventional macroscale wicks. While wicking serves the key purpose of transporting fluid, the nanofiber geometry of a nanowick makes it possible to exploit additional effects -- most notably, efficient nanoscale mixing, fluidic effects for logic or control, and ultrafiltration (in which mats of nanofibers act as biomolecular sieves).
    Keywords: Nonmetallic Materials
    Type: NPO-40440 , NASA Tech Briefs, October 2007; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Capillography (from the Latin capillus, 'hair', and the Greek graphein, to write ) is a recently conceived technique for forming mats of nanofibers into useful patterns. The concept was inspired by experiments on carpetlike mats of multiwalled carbon nanotubes. Capillography may have the potential to be a less-expensive, less-time-consuming alternative to electron-beam lithography as a means of nanoscale patterning for the fabrication of small devices and instruments. In capillography, one exploits the lateral capillary forces exerted on small objects that pierce the surface of a liquid. If the small objects are identical, then the forces are always attractive. Two examples of the effects of such forces are the agglomeration of small particles floating on the surface of a pond and the drawing together of hairs of a wet paintbrush upon removal of the brush from water. Because nanoscale objects brought into contact remain stuck together indefinitely due to Van der Waals forces, patterns formed by capillography remain even upon removal of the liquid. For the experiments on the mats of carbon nanotubes, a surfactant solution capable of wetting carbon nanotubes (which are ultra-hydrophobic) was prepared. The mats were wetted with the solution, then dried. Once the mats were dry, it was found that the nanotubes had become ordered into various patterns, including nestlike indentations, trenches, and various combinations thereof. It may be possible to exploit such ordering effects through controlled wetting and drying of designated portions of mats of carbon nanotubes (and, perhaps, mats of nanofibers of other materials) to obtain patterns similar to those heretofore formed by use of electron-beam lithography. For making patterns that include nestlike indentations, it has been conjectured that it could be possible to control the nesting processes by use of electrostatic fields. Further research is needed to understand the physics of the patterning processes in order to develop capabilities to control patterns formed in capillography.
    Keywords: Nonmetallic Materials
    Type: NPO-40980 , NASA Tech Briefs, September 2008; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...