ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-04-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-07-17
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-25
    Description: The extraordinary compaction of DNA in vivo, 2 m of DNA packed into a nucleus that is six orders of magnitude smaller, presents a conundrum: How can the cell maintain this highly dense chromatin structure while also carrying out exquisitely regulated processes like gene expression, DNA replication, and DNA repair?...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-08
    Description: : Precise regulatory control of genes, particularly in eukaryotes, frequently requires the joint action of multiple sequence-specific transcription factors. A cis -regulatory module (CRM) is a genomic locus that is responsible for gene regulation and that contains multiple transcription factor binding sites in close proximity. Given a collection of known transcription factor binding motifs, many bioinformatics methods have been proposed over the past 15 years for identifying within a genomic sequence candidate CRMs consisting of clusters of those motifs. Results: The MCAST algorithm uses a hidden Markov model with a P -value-based scoring scheme to identify candidate CRMs. Here, we introduce a new version of MCAST that offers improved graphical output, a dynamic background model, statistical confidence estimates based on false discovery rate estimation and, most significantly, the ability to predict CRMs while taking into account epigenomic data such as DNase I sensitivity or histone modification data. We demonstrate the validity of MCAST’s statistical confidence estimates and the utility of epigenomic priors in identifying CRMs. Availability and implementation: MCAST is part of the MEME Suite software toolkit. A web server and source code are available at http://meme-suite.org and http://alternate.meme-suite.org . Contact: t.bailey@imb.uq.edu.au or william-noble@uw.edu Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-10
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-16
    Description: Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides. To our knowledge, all existing MS/MS search engines compute scores individually between a given observed spectrum and each possible candidate peptide from the database. In this work, we use a trellis , a data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly recomputing common sub-computations among different candidates. We show how trellises may be used to significantly speed up existing scoring algorithms, and we theoretically quantify the expected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representations of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian network for spectrum identification, leading to greatly improved spectrum identification accuracy. Contact: bilmes@uw.edu or william-noble@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-24
    Description: Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres’ tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms.
    Keywords: Computational Methods, Chromatin and Epigenetics, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-07-02
    Description: The MEME Suite is a powerful, integrated set of web-based tools for studying sequence motifs in proteins, DNA and RNA. Such motifs encode many biological functions, and their detection and characterization is important in the study of molecular interactions in the cell, including the regulation of gene expression. Since the previous description of the MEME Suite in the 2009 Nucleic Acids Research Web Server Issue , we have added six new tools. Here we describe the capabilities of all the tools within the suite, give advice on their best use and provide several case studies to illustrate how to combine the results of various MEME Suite tools for successful motif-based analyses. The MEME Suite is freely available for academic use at http://meme-suite.org , and source code is also available for download and local installation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-13
    Description: A growing body of experimental evidence supports the hypothesis that the 3D structure of chromatin in the nucleus is closely linked to important functional processes, including DNA replication and gene regulation. In support of this hypothesis, several research groups have examined sets of functionally associated genomic loci, with the aim of determining whether those loci are statistically significantly colocalized. This work presents a critical assessment of two previously reported analyses, both of which used genome-wide DNA–DNA interaction data from the yeast Saccharomyces cerevisiae , and both of which rely upon a simple notion of the statistical significance of colocalization. We show that these previous analyses rely upon a faulty assumption, and we propose a correct non-parametric resampling approach to the same problem. Applying this approach to the same data set does not support the hypothesis that transcriptionally coregulated genes tend to colocalize, but strongly supports the colocalization of centromeres, and provides some evidence of colocalization of origins of early DNA replication, chromosomal breakpoints and transfer RNAs.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-17
    Description: Motivation: Recent technological advances allow the measurement, in a single Hi-C experiment, of the frequencies of physical contacts among pairs of genomic loci at a genome-wide scale. The next challenge is to infer, from the resulting DNA–DNA contact maps, accurate 3D models of how chromosomes fold and fit into the nucleus. Many existing inference methods rely on multidimensional scaling (MDS), in which the pairwise distances of the inferred model are optimized to resemble pairwise distances derived directly from the contact counts. These approaches, however, often optimize a heuristic objective function and require strong assumptions about the biophysics of DNA to transform interaction frequencies to spatial distance, and thereby may lead to incorrect structure reconstruction. Methods: We propose a novel approach to infer a consensus 3D structure of a genome from Hi-C data. The method incorporates a statistical model of the contact counts, assuming that the counts between two loci follow a Poisson distribution whose intensity decreases with the physical distances between the loci. The method can automatically adjust the transfer function relating the spatial distance to the Poisson intensity and infer a genome structure that best explains the observed data. Results: We compare two variants of our Poisson method, with or without optimization of the transfer function, to four different MDS-based algorithms—two metric MDS methods using different stress functions, a non-metric version of MDS and ChromSDE, a recently described, advanced MDS method—on a wide range of simulated datasets. We demonstrate that the Poisson models reconstruct better structures than all MDS-based methods, particularly at low coverage and high resolution, and we highlight the importance of optimizing the transfer function. On publicly available Hi-C data from mouse embryonic stem cells, we show that the Poisson methods lead to more reproducible structures than MDS-based methods when we use data generated using different restriction enzymes, and when we reconstruct structures at different resolutions. Availability and implementation: A Python implementation of the proposed method is available at http://cbio.ensmp.fr/pastis . Contact: william-noble@uw.edu or jean-philippe.vert@mines.org
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...