ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-05-25
    Description: The HST Treasury Program Advanced Spectral Library Project: Cool Stars was designed to collect representative, high-quality UV spectra of eight evolved FM type cool stars. The Space Telescope Imaging Spectrograph (STIS)echelle spectra of these objects enable investigations of a broad range of topics, including stellar and interstellar astrophysics. This paper provides a guide to the spectra of the two evolved M stars, the M2 Iab supergiant Oriand the M3.4 giant Cru, with comparisons to the prototypical K1.5 giant Boo. It includes identifications of the significant atomic and molecular emission and absorption features and discusses the character of the photospheric and chromospheric continua and line spectra. The fluorescent processes responsible for a large portion of the emission-line spectrum, the characteristics of the stellar winds, and the available diagnostics for hot and cool plasmas are also summarized. This analysis will facilitate the future study of the spectra, outer atmospheres, and winds, not only of these objects but of numerous other cool, low-gravity stars, for years to come.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64711 , The Astrophysicial Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 869; 2; 157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-12
    Description: The photon-scattering winds of M giants absorb parts of the chromospheric emission lines and produce self-reversed spectral features in high-resolution Hubble Space Telescope (HST)/GHRS spectra. These spectra provide an opportunity to assess fundamental parameters of the wind, including flow and turbulent velocities, the optical depth of the wind above the region of photon creation, and the stars mass-loss rate. This paper is the last paper in the series GHRS Observations of Cool, Low-Gravity Stars; the last several have compared empirical measurements of spectral emission lines with models of the winds and mass loss of K giants and supergiants. We have used the Sobolev with Exact Integration radiative transfer code, along with simple models of the outer atmosphere and wind, to determine and compare the wind characteristics of the two M-giant stars, gamma Cru (M3.5III) and mu Gem (M3IIIab), with previously derived values for low-gravity K-stars. The analysis specifies the wind parameters and calculates line profiles for the Mg II resonance lines, in addition to a range of unblended Fe II lines. Our line sample covers a large range of wind opacities and, therefore, probes a range of heights in the atmosphere. Our results show that mu Gem has a slower and more turbulent wind than gamma Cru. Also, mu Gem has a weaker chromosphere, in terms of surface flux, with respect to gamma Cru. This suggests that mu Gem is more evolved than gamma Cru. Comparing the two M giants in this work with previously studied K-giant and supergiant stars (alpha Tau, gamma Dra, and lambda Vel) reveals that the M giants have slower winds than the earlier giants, but exhibit higher mass-loss rates. Our results are interpreted in the context of the winds being driven by Alfvn waves.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68825 , GSFC-E-DAA-TN64696 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 869; 1; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...