ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2019-06-28
    Description: Remote sensing (RS) is currently regarded as one of the standard tools used for mapping invasive and expansive plants for scientific purposes and it is increasingly widely used in nature conservation management. The applicability of RS methods is determined by its limitations and requirements. One of the most important limitations is the species percentage cover at which the classification result is correct and useful for nature conservation. The primary objective, carried out in 2017 in three areas of Poland, was to determine the minimum percentage cover from which it is possible to identify a target species by RS methods. A secondary objective of this research, related to the requirements of the method, was to optimize the set of training polygons for a target species in terms of the number of polygons and abundance percentage cover of the target species. Our method has to be easy to use, effective, and applicable, therefore the analysis was carried out using the basic set of rasters—the first 30 channels after the Minimum Noise Fraction (MNF) transformation (the mosaic of hyperspectral data from HySpex sensors with spectral range 0.4–2.5 µm) and commonly used Random Forest algorithm. The analysis used airborne hyperspectral data with a spatial resolution of 1 m to perform classification of one invasive and three expansive plants—two grasses and two large perennials. On-ground training and validation data sets were collected simultaneously with airborne data collection. When testing different classification scenarios, only the set of training polygons for a target species was changed. Classification results were evaluated based on three methods: accuracy measures (Kappa and F1), true-positive pixels in subclasses with different species cover and compatibility with field mapping. The classification results indicate that to classify the target plant species at the accepted level, the training dataset should contain polygons with a species cover ranging from 80–100%. Training performed only using polygons with a species characterized by a variable, but lower, cover (20–70%) and missing samples in the 80–100% range, led to a map which was not acceptable because of a high overestimation of target species. We achieved effective identification of species in areas where the species cover is above 50%, considering that ecosystems are heterogeneous. The results of these studies developed a methodology of field data acquisition and the necessity of synchronization in the acquisition of airborne data, and training and validation of on-ground sampling.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-10
    Description: The process of secondary succession is one of the most significant threats to non-forest (natural and semi-natural open) Natura 2000 habitats in Poland; shrub and tree encroachment taking place on abandoned, low productive agricultural areas, historically used as pastures or meadows, leads to changes to the composition of species and biodiversity loss, and results in landscape transformations. There is a perceived need to create a methodology for the monitoring of vegetation succession by airborne remote sensing, both from quantitative (area, volume) and qualitative (plant species) perspectives. This is likely to become a very important issue for the effective protection of natural and semi-natural habitats and to advance conservation planning. A key variable to be established when implementing a qualitative approach is the remote sensing data acquisition date, which determines the developmental stage of trees and shrubs forming the succession process. It is essential to choose the optimal date on which the spectral and geometrical characteristics of the species are as different from each other as possible. As part of the research presented here, we compare classifications based on remote sensing data acquired during three different parts of the growing season (spring, summer and autumn) for five study areas. The remote sensing data used include high-resolution hyperspectral imagery and LiDAR (Light Detection and Ranging) data acquired simultaneously from a common aerial platform. Classifications are done using the random forest algorithm, and the set of features to be classified is determined by a recursive feature elimination procedure. The results show that the time of remote sensing data acquisition influences the possibility of differentiating succession species. This was demonstrated by significant differences in the spatial extent of species, which ranged from 33.2% to 56.2% when comparing pairs of maps, and differences in classification accuracies, which when expressed in values of Cohen’s Kappa reached ~0.2. For most of the analysed species, the spring and autumn dates turned out to be slightly more favourable than the summer one. However, the final recommendation for the data acquisition time should take into consideration the phenological cycle of deciduous species present within the research area and the abiotic conditions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-23
    Description: Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...