ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The use of a circulation control to deflect turbofan engine thrust beyond 90 deg. has been proven in full-scale static ground tests of the circulation-control-wing/upper-surface-blowing (CCW/USB) concept. This powered high-lift system employs a circular, blown trailing edge to replace the USB mechanical flaps to entrain engine-exhaust flow, and to obtain both a vertical-thrust component and an augmented circulation lift for short takeoff and landing (STOL) applications. Previous tests (Phase 1), done in 1982, of a basic configuration installed on the Quiet Short Haul Research Aircraft confirmed these CCW/USB systems capabilities. A second phase (Phase 2) of full-scale, static, thrust-deflection investigations has reconfirmed the ability to deflect engine thrust from 40 to 102 deg., depending on thrust level. Five new configurations were evaluated and performance improvements noted for those configurations with larger blown span, fences or favorable engine interactions, smaller slot height, and larger radii with less than 180 deg. of CCW surface arc. In general, a 90 deg. circular arc with a smaller slot height provided the best performance, demonstrating that adequate thrust turning can be produced by a trailing-edge shape which may have minimal cruise-performance penalty. Thrust deflections were achieved at considerably lower blowing momentum than was required for the baseline case of Phase 1. Improved performance and versatility were thus confirmed for the CCW/USB system applied to STOL aircraft, where the potential for developing a non-moving-parts pneumatic thrust deflector to rapidly vary horizontal force from thrust to drag, while maintaining constant vertical force, appears quite promising. The conversion from high-lift to lower-drag cruise mode by merely terminating the blowing provides an effective STOL aircraft system.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-2684 , NAS 1.60:2684
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 86-0476
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-84232 , A-8883 , NAS 1.15:84232
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Technology developed for the Circulation Control Wing high-lift system has been extended to augment lift by entraining and redirecting engine thrust. Ejecting a thin jet sheet tangentially over a small curved deflecting surface adjacent to the slipstream of a turbofan engine causes the slipstream to flow around that deflecting surface. The angle of deflection is controlled pneumatically by varying the momentum of the thin jet sheet. The downward momentum of the slipstream enhances wing lift. This concept of pneumatically deflecting the slipstream has been applied to an upper surface blowing high-lift system and to a thrust deflecting system. The capability of the pneumatic upper surface blowing system was demonstrated in a series of investigations using a wind tunnel model and the NASA Quiet Short-haul Research Aircraft (QSRA). Full-scale thrust deflections greater than 90 deg were achieved. This mechanically simple system can provide increased maneuverability, heavy lift or overload capability, or short takeoff and landing performance.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 841497 , V/STOL: An update and overview; Oct 15, 1984 - Oct 18, 1984; Long Beach, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...