ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-06-19
    Description: We developed a facile method to fabricate highly porous Au-embedded WO3 nanowire structures for efficient sensing of CH4 and H2S gases. Highly porous single-wall carbon nanotubes were used as template to fabricate WO3 nanowire structures with high porosity. Gold nanoparticles were decorated on the tungsten nanowires by dipping in HAuCl4 solution, followed by oxidation. The surface morphology, structure, and electrical properties of the fabricated WO3 and Au-embedded WO3 nanowire structures were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and current–voltage measurements. Formation of a nanowire structure resulted in significant enhancement in sensing response to H2S and CH4 gases. Furthermore, Au embedment into the WO3 nanowire structures remarkably improved the performance of the sensors. The increase in response performance of sensors and adsorption–desorption kinetic processes on the sensing layers were discussed in relation with the role of Au embedment. Scientific Reports 5 doi: 10.1038/srep11040
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...