ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Plant biotechnology. ; Agriculture. ; Bioinformatics. ; Biology Technique. ; Plant genetics. ; Plant Biotechnology. ; Agriculture. ; Bioinformatics. ; Computational and Systems Biology. ; Biological Techniques. ; Plant Genetics.
    Description / Table of Contents: Solve the breeder’s equation using high-throughput crop phenotyping technology -- Experiences of Applying Field-Based High-Throughput Phenotyping for Wheat Breeding -- High-throughput crop phenotyping systems for controlled environments -- Got all the answers! What were the questions? Avoiding the risk of “phenomics” slipping into a technology spree. Subject Index.
    Abstract: This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology.
    Type of Medium: Online Resource
    Pages: XVII, 249 p. 65 illus., 59 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030737344
    Series Statement: Concepts and Strategies in Plant Sciences,
    DDC: 631.52
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 11 (1992), S. 576-580 
    ISSN: 1432-203X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf blade tissue of maize inbred lines B73 and Mo17 was analyzed for intraspecific genetic variability in the heat shock response. The maize inbreds were characterized for acquired thermal tolerance and patterns of heat shock protein synthesis. The leakage conductivity assay of membrane stability during stress indicated that Mol7 possesses greater potential than B73 to acquire thermal tolerance. Poly(A)+ RNA, extracted from leaf blades, was translated in vitro in the presence of 35S-methionine and the translation products separated by twodimensional gel electrophoresis. Major genotypic differences were observed in the translation products. Mo 17 synthesized twelve unique heat shock proteins in the 15–18 kD range, but B73 synthesized only three unique heat shock proteins in the same range. DNA polymorphisms were observed between the maize lines using 32P labeled heat shock protein gene probes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 8 (1989), S. 108-111 
    ISSN: 1432-203X
    Keywords: Cellular ; Cereal ; Heat stress ; Heat tolerance ; Wheat suspension culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The objectives of this study were to compare thermotolerance in whole plants vs. suspension cell cultures of winter wheat, and to evaluate the synthesis of heat shock proteins in relation to genotypic differences in thermotolerance in suspension cells. Whole plant genetic differences in the development of heat tolerance were identified for three wheat genotypes (ND 7532, KS 75210 and TAM 101). Suspension cell cultures of these genotypes were used to evaluatein vitro response to heat stress. Viability tests by triphenyl tetrazolium chloride (TTC) and by fluorescein diacetate (FD) were utilized to determine the relationship of cellular response to heat stress (37°C/24 h, 50°C/1h). KS 75210 and ND 7532 are relatively heat susceptible. TAM 101 is heat tolerant. Both tests at the cellular level were similar to the whole plant response. Thus, cellular selection for enhancing heat tolerance seems feasible. Heat shock protein (HSP) synthesis of two genotypes, ND 7532 and TAM 101 were determined for suspension cultured cells. In suspension cultures, HSPs of molecular weight 16 and 17 kD were found to be synthesized at higher levels in the heat tolerant genotype (TAM 101) than the susceptible genotype (ND 7532), both at 34° and 37°C treatments for 2 hours and 5 hours. HSP 22 kD was synthesized more at 34°C for TAM 101 than ND 7532, but not at 37°C; whereas, HSP 33 kD was synthesized at 37°C at similar abundance for both genotypes, but not at 34°C. These results indicated that there is a differential expression of HSP genes in wheat suspension cells at different temperature stress durations and between heat tolerant and heat susceptible genotypes. It appears that the levels of synthesis of HSPs 16 and 17 kD are correlated with genotypic differences in thermal tolerance at the cellular level in two genotypes of wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 84 (1992), S. 835-838 
    ISSN: 1432-2242
    Keywords: RAPD ; Genetic diversity ; Phenograms ; Triticum monococcum ; Triticum urartu
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genetic diversity of two diploid wheat species, Triticum monococcum and Triticum urartu (2n=2x=14), was assessed using random primers and the polymerase chain reaction (PCR). Electrophoretic analysis of the amplification products revealed a higher incidence of polymorphism in T. urartu than T. monococcum. Pair-wise comparisons of unique and shared polymorphic amplification products, were used to generate Jaccard's similarity coefficients. These were employed to construct phenograms using an unweighted pair-group method with arithmetical averages (UPGMA). The UPGMA analysis indicated a higher similarity among T. monococcum than T. urartu. Analysis of RAPD data appears to be helpful in determining the genetic relationships among genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 8 (1990), S. 639-642 
    ISSN: 1432-203X
    Keywords: Cereal ; Regeneration-competent ; Shoot-competent ; Wheat suspension culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hexaploid wheat plants were easily regenerated from young embryo-derived callus for twelve genotypes tested. After a 2.5 years culture period, however, most of the callus cells lost their ability to regenerate into shoots, but not into roots. A novel approach was used to regenerate shoots from the long-term suspension cultured cells. In general, instead of selecting embryogenic callus as source material, this approach requires the inoculation of unselected callus into liquid medium followed by removing the free floating cell portion, selecting out non-root forming cell clumps from the root forming primary suspension culture, and growing the putative shoot-competent clumps in liquid medium with reduced auxin concentrations. We have successfully established shoot-competent wheat suspension cultures for cv. ‘Mustang’. High (〉80%) frequencies of plant regeneration were observed from plating of 2.5 year suspension cultures. The suspension cultures established by this approach have been utilized to select for heat tolerant variants and will be an ideal source material for protoplast culture and transformation studies. This approach can also be applied to other cereal crops which form roots easily but are unstable in maintaining long term regenerable cultures and which are not easily adaptable to suspension culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-203X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A friable and fast-growing type of callus was isolated from a long term shoot-competent cell culture of wheat. The suspension cultures established from this callus consisted of small, densely cytoplasmic cells which divided more rapidly but with a lower plant regeneration frequency than the original culture. A high yield of protoplasts was released from suspension cells (2 to 3×107 protoplasts per ml packed cell volume) when treated with enzyme mixtures. The isolated protoplasts divided at a relatively high frequency (20% to 50%) in both liquid and agarose-solidified KM8p medium. Up to 0.21% of the dividing protoplasts continued to divide and form micro-calli. Sixty-eight plants were regenerated from micro-calli, and among the 30 plants which were transplanted to the greenhouse, 3 have survived.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 104 (1998), S. 1-8 
    ISSN: 1573-5060
    Keywords: spring wheat ; heat tolerance ; heat stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract High temperature is a major environmental stress factor limiting wheat (Triticum aestivum L.) productivity. Improvement of heat tolerance in wheat is an important breeding objective. Genetic variation in cellular thermotolerance among 56 spring wheat cultivars was evaluated at the seedling stage of growth by cell membrane thermostability (CMS) and triphenyl tetrazolium chloride (TTC) assays. A subset of eight lines was also evaluated at the flowering stage using the same assays. With both assays Average thermotolerance tended to decrease from the seedling to the flowering stages. However, thermotolerance was well correlated between growth stages among the eight cultivars for both CMS (r = 0.92; p = 0.004) and TTC (r = 0.84; p = 0.050). The correlation between TTC and CMS among the eight cultivars tested at the seedling and the flowering growth stages was significant (r = 0.74; p = 0.031 and r = 0.75; p = 0.029, respectively). The same correlation was less strong, though still significant (r = 0.32; p = 0.014) across 56 cultivars at the seedling stage. In a study of the cross V747 (tolerant)/Barkaee (susceptible), broad sense heritability was estimated at 89% for TTC. Most of the genetic variance was additive. CMS in seedlings of 16 cultivars was positively and significantly (p ≤ 0.05) correlated with yields of these cultivars in each of four hot environments in Mexico, Sudan, India, and Brazil. The same correlations for TTC were positive but nonsignificant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 104 (1998), S. 9-15 
    ISSN: 1573-5060
    Keywords: spring wheat ; heat tolerance ; heat stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Heat stress during grain filling is a major constraint to wheat (Triticum aestivum L.) yield. This study was performed to evaluate the relationship between stem reserves as a constitutive trait and of thermotolerance to sustained wheat grain filling under heat stress. Significant variation was seen among cultivars in the reduction in grain weight per ear (RGW), kernel number, and single kernel weight under heat stress. Differences in RGW among cultivars were ascribed to variation in the reduction in both kernel number and kernel weight under heat stress. Variation in the potential capacity for using mobilized stem reserves among cultivars was ascribed to variations in both kernel number and kernel weight under defoliation and ear shading. There was a strong negative correlation across cultivars (r = − 0.96; p ≤ 0.01) between RGW and PSR. A significant positive correlation (r = 0.92; p ≤ 0.01) was found across cultivars between the rate of chlorophyll loss under heat stress and photosynthate stem reserves (PSR) indicating that a high potential capacity for utilizing stem reserves for grain filling may be linked with accelerated leaf senescence. There was a strong negative association across cultivars between RGW and cell membrane thermostability at seedling (r = − 0.98) and the flowering (r = − 0.92; p ≤ 0.01) growth stages. The results indicate that grain filling under heat stress is closely related to the capacity for stem reserve remobilization as a constitutive trait and to plant thermotolerance as expressed by CMS in heat-hardened seedlings or adult plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 17 (1991), S. 273-275 
    ISSN: 1573-5028
    Keywords: Tahsp17.3 ; low-molecular-weight HSP ; Triticum aestivum L. ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5028
    Keywords: differential display ; heat shock proteins ; non-coding regions ; PCR ; reverse transcription ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolation of cDNAs encoding individual members of a gene family is essential for assessing their role in a biological phenomenon. However, this process is often laborious and slow due to highly conserved protein-coding region that interferes with the isolation of the individual members. Identification of gene-specific probes from 3′ non-coding regions of different members can assist in the fast retrieval and characterization of individual members of a multigene family. We used the recent technique of differential display for the same purpose. As an example of a multigene family in plants, we selected a heat shock protein gene family, HSP16.9 from wheat, with estimated 12 members. We modified the original differential display technique for selective amplification of the 3′ non-coding regions of different wheat HSP16.9 genes by replacing the random 10-mer in the original method with a conserved HSP16.9 gene family-specific primer. Sixteen cDNA fragments from these experiments were sequenced and they represent 8 different members of a 12 member gene family. Our succes can be attributed to shorter 3′ non-coding regions that are typical of higher-plant genes and use of highly conserved gene family-specific primer in these experiments. This modified differential display technique can be of general application to other plant systems where cloning of the different members of a gene family is desired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...