ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2024-03-15
    Description: Common sea stars (Asterias rubens) are at risk of physiological stress and decline with projected shifts in oceanic conditions. This study assessed changes in coelomic fluid (CF) blood gases, electrolytes, osmolality, and coelomocyte counts in adult common sea stars after exposure to stressors mimicking effects from climate change for 14 days, including decreased pH (−0.4 units, mean: 7.37), hypoxia (target dissolved oxygen ~1.75 mg O2/L, mean: 1.80 mg O2/L), or increased temperature (+10 °C, mean: 17.2 °C) and compared sea star CF electrolytes and osmolality to tank water. Changes in CF blood gases, electrolytes, and/or coelomocyte counts occurred in all treatment groups after stressor exposures, indicating adverse systemic effects with evidence of increased energy expenditure, respiratory or metabolic derangements, and immunosuppression or inflammation. At baseline, CF potassium and osmolality of all groups combined were significantly higher than tank water, and, after exposures, CF potassium was significantly higher in the hypoxia group as compared to tank water. These findings indicate physiological challenges for A. rubens after stressor exposures and, given increased observations of sea star wasting events globally, this provides evidence that sea stars as a broad group are particularly vulnerable to changing oceans.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Asterias rubens; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Calcium, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chloride; Chloride, standard deviation; Coelomic fluid, bicarbonate ion; Coelomic fluid, bicarbonate ion, standard deviation; Coelomic fluid, partial pressure of carbon dioxide; Coelomic fluid, partial pressure of carbon dioxide, standard deviation; Coelomic fluid, partial pressure of oxygen; Coelomic fluid, partial pressure of oxygen, standard deviation; Coelomic fluid, pH; Coelomic fluid, pH, standard deviation; Containers and aquaria (20-1000 L or 〈 1 m**2); Echinodermata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Magnesium; Magnesium, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Osmolality; Osmolality, standard deviation; Other studied parameter or process; Oxygen; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potassium; Potassium, standard deviation; Salinity; Single species; Sodium; Sodium, standard deviation; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature; Temperature, water; Time point, descriptive; Total coelomocyte count; Total coelomocyte count, standard deviation; Treatment; Type; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 538 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-08
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Franks, B. R., Tyminski, J. P., Hussey, N. E., Braun, C. D., Newton, A. L., Thorrold, S. R., Fischer, G. C., McBride, B., & Hueter, R. E. Spatio-temporal variability in white shark (Carcharodon carcharias) movement ecology during residency and migration phases in the western North Atlantic. Frontiers in Marine Science, 8, (2021): 744202, https://doi.org/10.3389/fmars.2021.744202.
    Description: Understanding how mobile, marine predators use three-dimensional space over time is central to inform management and conservation actions. Combining tracking technologies can yield powerful datasets over multiple spatio-temporal scales to provide critical information for these purposes. For the white shark (Carcharodon carcharias), detailed movement and migration information over ontogeny, including inter- and intra-annual variation in timing of movement phases, is largely unknown in the western North Atlantic (WNA), a relatively understudied area for this species. To address this need, we tracked 48 large juvenile to adult white sharks between 2012 and 2020, using a combination of satellite-linked and acoustic telemetry. Overall, WNA white sharks showed repeatable and predictable patterns in horizontal movements, although there was variation in these movements related to sex and size. While most sharks undertook an annual migratory cycle with the majority of time spent over the continental shelf, some individuals, particularly adult females, made extensive forays into the open ocean as far east as beyond the Mid-Atlantic Ridge. Moreover, increased off-shelf use occurred with body size even though migration and residency phases were conserved. Summer residency areas included coastal Massachusetts and portions of Atlantic Canada, with individuals showing fidelity to specific regions over multiple years. An autumn/winter migration occurred with sharks moving rapidly south to overwintering residency areas in the southeastern United States Atlantic and Gulf of Mexico, where they remained until the following spring/summer. While broad residency and migration periods were consistent, migratory timing varied among years and among individuals within years. White sharks monitored with pop-up satellite-linked archival tags made extensive use of the water column (0–872 m) and experienced a broad range of temperatures (−0.9 – 30.5°C), with evidence for differential vertical use based on migration and residency phases. Overall, results show dynamic inter- and intra-annual three-dimensional patterns of movements conserved within discrete phases. These results demonstrate the value of using multiple tag types to track long-term movements of large mobile species. Our findings expand knowledge of the movements and migration of the WNA white shark population and comprise critically important information to inform sound management strategies for the species.
    Description: Primary funding for this work, including research shiptime, fishing operations, and acoustic and SPOT tags, was provided by OCEARCH and its sponsors. Funding for PSATs was provided by the Shark Foundation (Hai Siftung) and the Disney Conservation Fund. PSAT data analysis was supported by a grant from NOAA/National Sea Grant to RH. Support for RH’s contributions was provided by the Perry W. Gilbert Chair in Shark Research at Mote Marine Laboratory, NOAA, and OCEARCH.
    Keywords: White shark ; Western North Atlantic ; Telemetry ; Migration ; Fidelity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...