ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-07-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Light, C., Arbic, B., Martin, P., Brodeau, L., Farrar, J., Griffies, S., Kirtman, B., Laurindo, L., Menemenlis, D., Molod, A., Nelson, A., Nyadjro, E., O’Rourke, A., Shriver, J., Siqueira, L., Small, R., & Strobach, E. Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models. Climate Dynamics, (2022): 1–27, https://doi.org/10.1007/s00382-022-06257-6.
    Description: High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018. https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (〈 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.
    Description: Support for CXL’s effort on this project was provided by a Research Experiences for Undergraduates (REU) supplement for National Science Foundation (NSF) grant OCE-1851164 to BKA, which also provided partial support for PEM. In addition, BKA acknowledges NSF grant OCE-1351837, which provided partial support for AKO, Office of Naval Research grant N00014-19-1-2712 and NASA grants NNX17AH55G, which also provided partial support for ADN, and 80NSSC20K1135. JTF’s participation, and the SPURS-II buoy data, were funded by NASA grants 80NSSC18K1494 and NNX15AG20G.
    Keywords: Precipitation ; High-frequency precipitation ; Numerical modeling ; High-resolution models ; Coupled ocean-atmosphere models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-01
    Description: We consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-16
    Description: We quantify skill and uncertainty in observing the statistics of natural variability using observing system simulation experiments on an ensemble of climate simulations and an observing strategy of in situ measurements and objective mapping. The targeted statistic is the 0–700 m global ocean heat content anomaly as observed by the In Situ Analysis System 2013 (ISAS13) strategy of a long, equilibriated simulation of the Community Climate System Model (CCSM) version 3.5. Subannual variability is found to be significantly contaminated by the observing strategy, especially before 2005, primarily due to the sparseness and seasonality in the number and location of pre-Argo observations. However, one-year running means from 2005 onward are found to faithfully capture the natural variability of the model's true ocean heat content variability. During these years, synthetic observed annual running means are strongly correlated with the actual annual running means of the model, with a median correlation of 95 %, versus only 60 % for the observational record before 2005. When scaled to account for the fact that the real ocean is more variable than the model, root mean square errors in observing the annual-running mean natural variability of the global ocean heat content are estimated to be 6.2 ZJ for the pre-Argo era (1990–2005) and 2.1 ZJ for the Argo era (2005–2013) with relative signal-to-noise ratios of 1.9 and 14.7. Combining the estimated, scaled uncertainties of the observing strategy with its estimated trend, the 1990–2013 trend in global ocean heat content is found to be 5.3 ± 1.0 ZJ/yr.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...