ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-19
    Description: Taking into account the high potential of cyanobacteria to tolerate salinity stress, researches have evaluated the morphological and physiological behavior of these microorganisms in recent years. This study is conducted to investigate the impact of different concentrations of NaCl on the morphological and physiological traits of Nostoc sp. ISC 101. Biometrical and morphological observations are carried out by light and scanning electron microscopy. Results indicated that vegetative cells and heterocysts were wider in control treatment in comparison with samples under different amounts of salinity. Akinete formation began in 3% NaCl and reached to highest level in 5%. The relative degeneration of structure of the cells in 5% salt was demonstrated. According to physiological impresses of salt it was found that growth rate decreased with increasing salinity. Total chlorophyll content stimulated in 1% salinity, but in the higher concentration it decreased vice versa. The rate of APC, PE, PC increased in 1% salinity, although in high level concentration they would be diminished. Photosynthesis rate was also decreased with increasing salinity but it was stimulated slightly in 1% NaCl. All in consequence, despite of acclimation of this strain to marine environment, not much tolerance was seen in the mentioned treatments, and increasing salinity to upper than 1% NaCl had destructive effects, and cyanobacterium maintained its growth rate at slightly saline environments.
    Description: Published
    Keywords: Biology ; Physiology ; Growth ; Morphology ; Nostoc ; Photosynthesis ; Salinity ; SEM ; 16S rRNA ; Morphological ; Physiological
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.907-917
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/22738 | 18721 | 2018-05-18 22:45:45 | 22738 | Iranian Fisheries Science Research Institute
    Publication Date: 2021-07-09
    Description: Taking into account the high potential of cyanobacteria to tolerate salinity stress, researches have evaluated the morphological and physiological behavior of these microorganisms in recent years. This study is conducted to investigate the impact of different concentrations of NaCl on the morphological and physiological traits of Nostoc sp. ISC 101. Biometrical and morphological observations are carried out by light and scanning electron microscopy. Results indicated that vegetative cells and heterocysts were wider in control treatment in comparison with samples under different amounts of salinity. Akinete formation began in 3% NaCl and reached to highest level in 5%. The relative degeneration of structure of the cells in 5% salt was demonstrated. According to physiological impresses of salt it was found that growth rate decreased with increasing salinity. Total chlorophyll content stimulated in 1% salinity, but in the higher concentration it decreased vice versa. The rate of APC, PE, PC increased in 1% salinity, although in high level concentration they would be diminished. Photosynthesis rate was also decreased with increasing salinity but it was stimulated slightly in 1% NaCl. All in consequence, despite of acclimation of this strain to marine environment, not much tolerance was seen in the mentioned treatments, and increasing salinity to upper than 1% NaCl had destructive effects, and cyanobacterium maintained its growth rate at slightly saline environments.
    Keywords: Biology ; Environment ; Growth ; Morphology ; Nostoc ; Photosynthesis ; Salinity ; SEM ; 16S rRNA ; Biology ; Physiology ; Iran
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 907-917
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...