ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-03-30
    Description: Physical fatigue is one of the most important and highly prevalent occupational hazards in different industries. This research adopts a new analytical framework to detect workers’ physical fatigue using heart rate measurements. First, desired features are extracted from the heart signals using different entropies and statistical measures. Then, a feature selection method is used to rank features according to their role in classification. Finally, using some of the frequently used classification algorithms, physical fatigue is detected. The experimental results show that the proposed method has excellent performance in recognizing the physical fatigue. The achieved accuracy, sensitivity, and specificity rates for fatigue detection are 90.36%, 82.26%, and 96.2%, respectively. The proposed method provides an efficient tool for accurate and real-time monitoring of physical fatigue and aids to enhance workers’ safety and prevent accidents. It can be useful to develop warning systems against high levels of physical fatigue and design better resting times to improve workers’ safety. This research ultimately aids to improve social sustainability through minimizing work accidents and injuries arising from fatigue.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-20
    Description: This research presents a novel method for automated construction progress monitoring. Using the proposed method, an accurate and complete 3D point cloud is generated for automatic outdoor and indoor progress monitoring throughout the project duration. In this method, Structured-from-Motion (SFM) and Multi-View-Stereo (MVS) algorithms coupled with photogrammetric principles for the coded targets’ detection are exploited to generate as-built 3D point clouds. The coded targets are utilized to automatically resolve the scale and increase the accuracy of the point cloud generated using SFM and MVS methods. Having generated the point cloud, the CAD model is generated from the as-built point cloud and compared with the as-planned model. Finally, the quantity of the performed work is determined in two real case study projects. The proposed method is compared to the Structured-from-Motion (SFM)/Clustering Multi-Views Stereo (CMVS)/Patch-based Multi-View Stereo (PMVS) algorithm, as a common method for generating 3D point cloud models. The proposed photogrammetric Multi-View Stereo method reveals an accuracy of around 99 percent and the generated noises are less compared to the SFM/CMVS/PMVS algorithm. It is observed that the proposed method has extensively improved the accuracy of generated points cloud compared to the SFM/CMVS/PMVS algorithm. It is believed that the proposed method may present a novel and robust tool for automated progress monitoring in construction projects.
    Electronic ISSN: 2075-5309
    Topics: Architecture, Civil Engineering, Surveying
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-01
    Description: The construction industry has been criticized as being a non-sustainable industry that requires effective tools to monitor and improve its sustainability performance. The multiplicity of indicators of the three pillars of sustainability—economic, social, and environmental—complicates construction sustainability assessments for project managers. Therefore, prioritizing and selecting appropriate sustainability indicators (SIs) is essential prior to conducting a construction sustainability assessment. The main purpose of this research is to select the most appropriate set of SIs to address all three pillars of highway sustainability by a new group decision-making approach. The proposed approach accounts for risk attitudes of experts and entropy measures under a triangular intuitionistic fuzzy (TIF) environment, to handle the inherent uncertainty and vagueness that is present throughout the evaluation process. Furthermore, new separation measures and ranking scores are introduced to distinguish the preference order of SIs. Eventually, the approach is implemented in a case study of highway construction projects and the applicability of the approach is examined. To investigate the stability and validity of computational results, a sensitivity analysis is carried out and a comparison is made between the obtained ranking outcomes and the traditional decision-making methods.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...