ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2008-03-12
    Print ISSN: 1865-0473
    Electronic ISSN: 1865-0481
    Topics: Geosciences , Computer Science
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation hazards informed by VEPO data resources. The VEPO project has completed the first year of work to define science requirements, to document and register selected data products in SPASE format while evolving SPASE for increased applicability to VEPO data, and to support enhanced discovery and access for these products through the evolving data query and middleware system of the Virtual Heliospheric Observatory (VHO). The VEPO team operates as a heliophysics focus group for energetic particle data resources in partnership with VHO and also leverages existing data services of NASA's Space Physics Data Facility. We invite comments from the U.S. and international data provider and user communities on review of the current VEPO/VHO user interface, on directions for future evolution of VEPO and supporting data systems including VHO and SPDF, and on relations to other elements of the heliophysics virtual observatory environment.
    Keywords: Astrophysics
    Type: 2008 Fall American Geophysical Union Meeting; Dec 13, 2008 - Dec 21, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: We developed a scheme for finding the front boundary of an interplanetary magnetic cloud (MC) based on criteria that depend on the possible existence of any one or all of six specific solar wind features. The features that the program looks for, within +/- 2 hours of a preliminarily determined time for the front boundary, estimated either by visual inspection or by an automatic MC identification scheme, are: (1) a sufficiently large directional discontinuity in the interplanetary magnetic field (IMF), (2) existence of a magnetic hole, (3) a significant proton plasma beta drop, (4) a significant proton temperature drop, (5) a marked increase in the IMF's intensity, and (6) a significant decrease in a normalized root-mean-square deviation (RMS)of the magnetic field - where the scheme was tested using 5, 10, 15, and 20 minute averages of the relevant physical quantities, in order to find the optimum average (and RMS) to use. Other criteria, besides these six, were examined and dismissed as not reliable, e.g., plasma speed. The scheme was developed specifically for aiding in forecasting the strength and timing of a geomagnetic storm due to the passage of an interplanetary MC in real-time, but can be used in post ground-data collection for imposition of consistency in choosing a MC's front boundary. The scheme has been extensively tested, first using 80 bona fide MCs over about 9 years of WIND data, and also for 121 MC-like structures as defined by a program that automatically identifies such structures over the same period. Optimum limits for various parameters in the scheme were found by statistical studies of the WIND MCs. The resulting limits can be user-adjusted for other data sets, if desired. Final testing of the 80 MCs showed that for 50 percent of the events the boundary estimates occurred within +/-10 minutes of visually determined times, 80 percent occurred within +/-30 minutes, and 91 percent occur within +/-60 minutes, and three or more individual boundary tests were passed for 88 percent of the total MCs. The scheme and its testing will be described.
    Keywords: Solar Physics
    Type: 2006 AGU Fall Meeting; Dec 10, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (LunaSOX), and Space Physics Data Facility (SPDF) services now provide a wide range of inner heliospheric spacecraft data that can be applied to space weathering of potential exploration destinations including the Moon, asteroids, and the moons of Mars, as well to radiation hazard assessment for the spacecraft and human explorers. For example, the new VEPO service for time-averaging of multi-source ion flux spectra enables the specification of composite flux spectra from a variety of ongoing and legacy missions for applications to surface interaction modeling. Apollo to Artemis data resources of LunaSOX enable specific space weathering investigations for the Moon, while VHO more generally covers the space field and plasma environments of the inner and outer solar system from the sunward-most perihelia of the twin Helios spacecraft to the ongoing heliosheath passages of the twin Voyagers. Composite multi-source spectra from VEPO can also be applied to the continuing compilation of accumulated 1-AU fluence spectra, mostly contributed by solar wind plasma and energetic particle events, for determination of time-averaged particle compositional and kinetic energy output from the Sun and for modeling of long-term irradiation impacts on planetary surfaces.
    Keywords: Solar Physics
    Type: GSFC.ABS.6303.2012 , 11th Annual International Astrophysics Conference; Mar 18, 2012 - Mar 23, 2012; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...