ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-02
    Description: Since the sound velocity for medical ultrasound imaging is usually set at 1540 m/s, the ultrasound imaging of a patient with a thick layer of subcutaneous fat is degraded due to variations in the sound velocity. This study proposes a method of compensating for image degradation to correct beamforming. This method uses the sound velocity distribution measured in simultaneous ultrasound (US) and magnetic resonance (MR) imaging. Experiments involving simultaneous imaging of an abdominal phantom and a human neck were conducted to evaluate the feasibility of the proposed method using ultrasound imaging equipment and a 1.5 T MRI scanner. MR-visible fiducial markers were attached to an ultrasound probe that was developed for use in an MRI gantry. The sound velocity distribution was calculated based on the MRI cross section, which was estimated as a corresponding cross section of US imaging using the location of fiducial markers in MRI coordinates. The results of the abdominal phantom and neck imaging indicated that the estimated values of sound velocity distribution allowed beamform correction that yielded compensated images. The feasibility of the proposed method was then evaluated in terms of quantitative improvements in the spatial resolution and signal-to-noise ratio.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-18
    Description: A flexible-shaped ultrasonic array probe that can be used in a high magnetic field environment in an MRI gantry has been developed. Given that this probe can be fixed according to the shape of the skull’s surface, it is particularly applicable for imaging in the brain. To perform ultrasonic beamforming using a bent probe, it is necessary to measure the bent shape. Therefore, in this research, the curvature of the probe was estimated using MRI. A phantom with ellipse surface close to the shape of a skull was created using a 3D printer. The probe was arranged along the phantom surface to perform MRI and ultrasonic beamforming. The ultrasonic array transducer had 192 elements made from 1-3 composite piezoelectric materials with an element spacing of 0.3 mm. Eight MR position markers were attached to the probe in parallel in two rows of four each, with the array transducer in between. The delay time of each element in dynamic focusing for reception was calculated from its position estimated by the curvature of the probe. To evaluate the feasibility of this method, a B-mode image of 0.98 mm-diameter-thread targets placed in water was generated. The beam width at half maximum of the echo peak in the lateral direction from the thread target set up near the transmission focal point was calculated based on the B-mode image. It was found that the beam width of 1.32 mm in the proposed method, which was close to the thread diameter, whereas that was 4.38 mm in the conventional method that did not consider the bending of the probe. Consequently, the proposed beamforming technique is feasible for ultrasonic imaging through an arbitrary curved surface. Practical applications with a head phantom mimicking skull and cerebral tissue are expected.
    Electronic ISSN: 2296-424X
    Topics: Physics
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...