ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 9 (1992), S. 73-84 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Of interest here are dynamic thermoelastic problems influenced by second sound effects. In this regard, the effect of the so called ‘heat waves’ on solid continua is investigated employing a ‘unified’ explicit computational architecture which uses the finite element method. The approach is robust and effective for transient interdisciplinary thermal-structural modeling/analysis. The non-classical relaxation model of Green and Lindsay (1972) involving two relaxation times is employed in the present work. Numerical simulations relevant to thermal shock problems in an elastic half-space are described for stainless steel via two different illustrative test cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The applicability and evaluation of a generalized gamma(T) family of flux-based representations are examined for two different thermal analysis formulations for structures and materials which exhibit no phase change effects. The so-called H-theta and theta forms are demonstrated for numerous test models and linear and higher-order elements. The results show that the theta form with flux-based representations is generally superior to traditional approaches.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-0159
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The paper presents numerical simulations for the prediction of thermal-stress and deformation fields resulting from phase change in solidifying bodies employing new finite element representations. The formulations herein demonstrated provide different perspectives and physical interpretation for the modeling/analysis of thermo-mechanical problems and possess several inherent advantages. In comparison to traditional approaches for solving similar problems, the paper employs new flux/stress based representations to enhance the overall effectiveness. Comparative numerical applications validate applicability of the formulations for predicting the temperature induced deformations and stresses resulting from effects due to phase change.
    Keywords: STRUCTURAL MECHANICS
    Type: ASME Intl. Computers in Engineering Conference and Exposition; Jul 30, 1989 - Aug 03, 1989; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...