ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-22
    Description: Recently, Brinster et al. suggested that type II fatty-acid biosynthesis (FASII) is not a suitable antibacterial target for Gram-positive pathogens because they use fatty acids directly from host serum rather than de novo synthesis. Their findings, if confirmed, are relevant for further scientific and financial investments in the development of new drugs targeting FASII. We present here in vitro and in vivo data demonstrating that their observations do not hold for Staphylococcus aureus, a major Gram-positive pathogen causing several human infections. The observed differences among Gram-positive pathogens in FASII reflects heterogeneity either in fatty-acid synthesis or in the capacity for fatty-acid uptake from the environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balemans, Wendy -- Lounis, Nacer -- Gilissen, Ron -- Guillemont, Jerome -- Simmen, Kenny -- Andries, Koen -- Koul, Anil -- England -- Nature. 2010 Jan 21;463(7279):E3; discussion E4. doi: 10.1038/nature08667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Antimicrobial Research, Tibotec BVBA, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20090698" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Bacteremia/drug therapy/microbiology ; Bacterial Proteins/antagonists & inhibitors/genetics/metabolism ; Fatty Acids/*biosynthesis/metabolism/pharmacology ; Host-Pathogen Interactions/drug effects ; Humans ; Mice ; Reproducibility of Results ; Staphylococcal Infections/drug therapy/microbiology ; Staphylococcus aureus/drug effects/genetics/*metabolism/pathogenicity ; Triclosan/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-14
    Description: The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 mug/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andries, Koen -- Verhasselt, Peter -- Guillemont, Jerome -- Gohlmann, Hinrich W H -- Neefs, Jean-Marc -- Winkler, Hans -- Van Gestel, Jef -- Timmerman, Philip -- Zhu, Min -- Lee, Ennis -- Williams, Peter -- de Chaffoy, Didier -- Huitric, Emma -- Hoffner, Sven -- Cambau, Emmanuelle -- Truffot-Pernot, Chantal -- Lounis, Nacer -- Jarlier, Vincent -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):223-7. Epub 2004 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium. kandries@prdbe.jnj.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591164" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antitubercular Agents/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Bacterial Proton-Translocating ATPases/*antagonists & ; inhibitors/chemistry/metabolism ; Diarylquinolines ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Drug Resistance, Bacterial ; Drug Therapy, Combination ; Enzyme Inhibitors/chemistry/pharmacology/therapeutic use ; Humans ; Male ; Mice ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Mycobacterium smegmatis/drug effects/enzymology/growth & development ; Mycobacterium tuberculosis/*drug effects/enzymology/growth & development ; Point Mutation ; Protein Subunits/antagonists & inhibitors/chemistry ; Quinolines/chemistry/pharmacokinetics/*pharmacology/*therapeutic use ; Tuberculosis/*drug therapy/microbiology ; Tuberculosis, Multidrug-Resistant/drug therapy/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-29
    Description: Tuberculosis (TB) is more prevalent in the world today than at any other time in human history. Mycobacterium tuberculosis, the pathogen responsible for TB, uses diverse strategies to survive in a variety of host lesions and to evade immune surveillance. A key question is how robust are our approaches to discovering new TB drugs, and what measures could be taken to reduce the long and protracted clinical development of new drugs. The emergence of multi-drug-resistant strains of M. tuberculosis makes the discovery of new molecular scaffolds a priority, and the current situation even necessitates the re-engineering and repositioning of some old drug families to achieve effective control. Whatever the strategy used, success will depend largely on our proper understanding of the complex interactions between the pathogen and its human host. In this review, we discuss innovations in TB drug discovery and evolving strategies to bring newer agents more quickly to patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koul, Anil -- Arnoult, Eric -- Lounis, Nacer -- Guillemont, Jerome -- Andries, Koen -- England -- Nature. 2011 Jan 27;469(7331):483-90. doi: 10.1038/nature09657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Antimicrobial Research, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium. akoul@its.jnj.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270886" target="_blank"〉PubMed〈/a〉
    Keywords: Antitubercular Agents/chemistry/pharmacology/*therapeutic use ; Cell Respiration/drug effects ; Clinical Trials as Topic ; *Drug Discovery ; Drug Resistance, Bacterial ; Drug Resistance, Multiple ; Host-Pathogen Interactions/drug effects ; Humans ; Mycobacterium tuberculosis/drug effects ; Signal Transduction/drug effects ; Tuberculosis/*drug therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...