ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 12 (1980), S. 45-76 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 306 (1983), S. 46-48 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Topographic waves (also known as vortex modes, rotational modes and second-class waves) can only exist in a rotating fluid with bottom topography. In the Northern Hemisphere, where the Coriolis parameter is positive, shallower water is always to the right of the direction of phase propagation2. The ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Two independent ice data sets from the Greenland and Labrador Seas have been analyzed for the purpose of characterizing interannual and decadal time scale sea-ice extent anomalies during this century. Sea-ice concentration data for the 1953–1984 period revealed the presence of a large positive anomaly in the Greenland Sea during the 1960s which coincided with the “great salinity anomaly”, an upper-ocean low-salinity water mass that was observed to travel cyclonically around the northern North Atlantic during 1968–1982. This ice anomaly as well as several smaller ones propagated into the Labrador Sea and then across to the Labrador and east Newfoundland coast, over a period of 3 to 5 years. A complex empirical orthogonal function analysis of the same data also confirmed this propagation phenomenon. An inverse relation between sea-ice and salinity anomalies in the Greenland-Labrador Sea region was also generally found. An analysis of spring and summer ice-limit data obtained from Danish Meteorological Institute charts for the period 1901–1956 indicated the presence of heavy ice conditions (i.e., positive ice anomalies) in the Greenland Sea during 1902–1920 and in the late 1940s, and generally negative ice anomalies during the 1920s and 1930s. Only limited evidence of the propagation of Greenland Sea ice anomalies into the Labrador Sea was observed, however, probably because the data were from the ice-melt seasons. On the other hand, several large ice anomalies in the Greenland Sea occurred 2–3 years after large runoffs (in the early 1930s and the late 1940s) from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic during 1964–1966 preceded the large Greenland Sea ice anomaly of the 1960s. These facts, together with recent evidence of ‘climatic jumps’ in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal self-sustained climate cycle in the Arctic. In the Greenland Sea, this cycle is characterized by a state of large sea-ice extent overlying an upper layer of cool, relatively fresh water that does not convectively overturn, which alternates every 10–15 years with a state of small sea-ice extent and relatively warm saline surface water that frequently overturns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1995), S. 67-76 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. An analysis is presented of extratropical cyclone frequency, the 500 hPa height standard deviation field and the monthly 700 hPa height field in the Northern Hemisphere, together with precipitation in the Mackenzie basin and the Mackenzie River runoff. Spatial and temporal variability in the data are examined for the period 1965 to 1989, and a cross-correlation analyses is performed to determine the relationship between the runoff and the precipitation variations, and between the precipitation and the atmospheric circulation anomalies. It is found that precipitation fluctuations in the Mackenzie River drainage basin are strongly linked to variations in the Mackenzie River runoff and in the North Pacific storm tracks, with the time scale of variability ranging from interannual to decadal. The results are discussed in relation to the interdecadal Arctic climate cycle proposed by Mysak, Manak and Marsden, and revised by Mysak and Power. In particular, the latter authors hypothesized that, as part of this cycle, air-sea interactions and synoptic scale processes over the northwestern North Atlantic influenced, via cyclone movements in the Labrador Sea and Baffin Bay, precipitation in northern Canada and hence river runoff into the Arctic. The results of this study indicate that such influences on the precipitation in the Mackenzie basin are small, and hence that the Mysak-Power feedback loop which describes this climate cycle needs further revision.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The global ocean circulation with a seasonal cycle has been simulated with a two-and-a-half layer upper-ocean model. This model was developed for the purpose of coupling to an atmospheric general circulation model for climate studies on decadal time scales. The horizontal resolution is 4° latitude by 5° longitude and is thus not eddy-resolving. Effects of bottom topography are neglected. In the vertical, the model resolves the oceanic mixed layer and the thermocline. A thermodynamic sea-ice model is coupled to the mixed layer. The model is forced at the surface with seasonally varying (a) observed wind stress, (b) heat fluxes, as defined by an atmospheric equilibrium temperature, and (c) Newtonian-type surface salt fluxes. The second layer is coupled to the underlying deep ocean through Newtonian-type diffusive heat and salt fluxes, convective overturning, and mass entrainment in the upwelling regions of the subpolar gyres. The overall global distributions of mixed layer temperature, salinity and thickness are favorably reproduced. Inherent limitations due to coarse horizontal resolution result in large mixed-layer temperature errors near continental boundaries and in weak current systems. Sea ice distributions agree well with observations except in the interiors of the Ross and Weddell Seas. A realistic time rate of change of heat storage is simulated. There is also realistic heat transport from low to high latitudes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 14 (1998), S. 451-460 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  The origin and space-time evolution of Beaufort-Chukchi Sea ice anomalies are studied using data and a recently developed dynamic-thermodynamic sea-ice model. First, the relative importance of anomalies of river runoff, atmospheric temperature and wind in creating anomalous sea-ice conditions in the Beaufort-Chukchi Sea is investigated. The results indicate that wind anomalies are the dominant factor responsible for creating interannual variability in the Beaufort-Chukchi Sea ice cover. Temperature anomalies appear to play a major role for longer time scale fluctuations, whereas the effects of runoff anomalies are small. The sea-ice model is then used to track the position of a positive sea-ice anomaly as it is transported by the Beaufort Gyre toward the Transpolar Drift Stream and then exported out of the Arctic Basin into the Greenland Sea via Fram Strait. The model integration shows that sea-ice anomalies originating in the western Beaufort Sea can survive a few seasonal cycles as they propogate through the Arctic Basin and can account for a notable amount of anomalous ice export into the Greenland Sea. These anomalies, however, represent a small contribution to the fresh water budget in this area when compared with sea-ice fluctuations generated by interannually varying local winds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 8 (1993), S. 241-246 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A Boolean delay equation (BDE) model is presented for the interdecadal Arctic and Greenland Sea climate cycle recently proposed by Mysak, Manak and Marsden. It is shown that 15- to 20-year oscillations can occur in the model for a variety of time delays in the BDEs. However, both the period and structure of the oscillations are sensitive to the initial conditions. In an extended model, in which the convection in the Greenland Sea is dependent upon the ice conditions during each of several previous years as well as the current year, the solution structure is more realistic, with two jumps per period of oscillation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 4 (1990), S. 263-267 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Boolean delay equation model of Ghil et al. for the study of Quaternary ice ages has been re-examined and also extended to include a hydrological feedback mechanism that directly influences the thermohaline circulation. For the basic Ghil et al. model (with the original and with corrected time delays), we show that the maximum duration for a high ice volume state depends continuously but not monotonically on the time delays of the problem. In particular, both short spiky glacials and longer glacials can be obtained from identical parameter values by simply choosing different initial conditions. In the extended model, we find that an additional temperature-hydrology-ocean feedback mechanism tends to generate longer glacials, but in neither case do the average time scales of model variability compare favourably with those of the major Quarternary glacials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 8 (1993), S. 103-116 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10−4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1995), S. 67-76 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An analysis is presented of extratropical cyclone frequency, the 500 hPa height standard deviation field and the monthly 700 hPa height field in the Northern Hemisphere, together with precipitation in the Mackenzie basin and the Mackenzie River runoff. Spatial and temporal variability in the data are examined for the period 1965 to 1989, and a cross-correlation analyses is performed to determine the relationship between the runoff and the precipitation variations, and between the precipitation and the atmospheric circulation anomalies. It is found that precipitation fluctuations in the Mackenzie River drainage basin are strongly linked to variations in the Mackenzie River runoff and in the North Pacific storm tracks, with the time scale of variability ranging from interannual to decadal. The results are discussed in relation to the interdecadal Arctic climate cycle proposed by Mysak, Manak and Marsden, and revised by Mysak and Power. In particular, the latter authors hypothesized that, as part of this cycle, air-sea interactions and synoptic scale processes over the northwestern North Atlantic influenced, via cyclone movements in the Labrador Sea and Baffin Bay, precipitation in northern Canada and hence river runoff into the Arctic. The results of this study indicate that such influences on the precipitation in the Mackenzie basin are small, and hence that the Mysak-Power feedback loop which describes this climate cycle needs further revision.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...