ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: spray-drying ; recombinant methionyl human growth hormone ; tissue-type plasminogen activator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The feasibility of spray-drying solutions of recombinant methionyl human growth hormone (hGH) and tissue-type plasminogen activator (t-PA) was investigated. hGH was formulated in a mannitol phosphate buffer and t-PA was used in an arginine phosphate formulation containing 0.004% (w/v) polysorbate 80. Using filtered air (90 – 150°C) as the drying medium, hGH could be dried to a residual moisture content of ≤4%. However, approximately 25% of the protein was degraded during the processing. Results of atomization studies suggest that surface denaturation at the air–liquid interface of the droplets in the spray plays a major role in the degradation of the protein. The addition of 0.1% (w/v) polysorbate 20 into the hGH formulation reduced the formation of soluble and insoluble aggregates by approximately 90% during atomization. During spray-drying the addition of 0.1% (w/v) polysorbate 20 reduced the formation of soluble and insoluble aggregates by approximately 70 and 85%, respectively. In contrast, t-PA remained intact upon atomization. Depending on the spray-drying conditions, product powders with a residual moisture content between 5 and 8% were obtained. No oxidation, aggregation, or denaturation occurred in the protein under several operation conditions. Overall, this study demonstrates that it is feasible to spray-dry t-PA in the current marketed formulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: rhDNase ; dornase alpha ; powder aerosol ; spray drying ; inhalation ; powder blends
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. We have used rhDNase to investigate the feasibility of developing a dry protein powder aerosol for inhalation delivery. Methods. Powders of rhDNase alone and with sodium chloride were prepared by spray drying. Powder blends were obtained by mixing (tumbling and sieving) pure rhDNase powder with 'carrier' materials (lactose, mannitol or sodium chloride). The weight percent of drug in the blends was between 5 and 70%. The particle size distributions and crystallinity of the spray dried powders were obtained by laser diffraction and X-ray powder diffraction, respectively. Particle morphology was examined by scanning electron microscopy. The ability of the powders and powder blends to be dispersed into respirable aerosols was measured using a Rotahaler™ connected to a multistage liquid impinger operating at 60 L/min. Results. Pure rhDNase powder was quite cohesive with a fine particle fraction (FPF or 'respirable fraction': % wt. of particles 〈 7 μm in the aerosol cloud) of about 20%. When particles also contained NaCl, the powders were dispersed better to form aerosols. A linear relationship was observed between the NaCl content and FPF for a similar primary size (~3 μm volume median diameter) of particles. The particle morphology of these powders varied systematically with the salt content. For the blends, SEM revealed a monolayer-like adhesion of the fine drug particles to the carriers at drug contents ≥50 % wt. An overall 2-fold increase in FPF of rhDNase in the aerosol cloud was obtained for all the blends compared to the pure drug aerosols. Conclusions. The aerosol properties of spray dried rhDNase powders can be controlled by incorporation of a suitable excipient, such as NaCl, and its relative proportion. Coarse carriers can also enhance the performance of rhDNase dry powder aerosols.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...