ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3083-3112 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Poly[3,3-bis(hydroxymethyl)oxetane], PBHMO, was prepared in high molecular weight (ηinh up to 5.2) by polymerizing the trimethylsilylether of 3,3-bis(hydroxymethyl)oxetane with the i-Bu3Al-0.7 H2O cationic catalyst at low temperature, followed by hydrolysis. PBHMO is crystalline, very high melting (314°C) and highly insoluble, much like its analog, cellulose. It is soluble in 75% H2SO4 at 30°C, being 65% converted to the acid sulfate ester; these conditions are useful for viscosity measurement, since the degradation rate is low and at least an order of magnitude less than for cellulose in this solvent. PBHMO can be prepared as oriented films and fibers using the lower melting diacetate (184°C) which can be melt or solution (CHCl3) fabricated and then the oriented forms saponified to oriented PBHMO. BHMO can be directly polymerized to low molecular weight, perhaps somewhat branched, PBHMO (ηinh 0.1) with trifluoromethanesulfonic acid catalyst at room temperature. Poly(3-methyl-3-hydroxymethyloxetane), (PMHMO), prepared in high molecular weight (ηinh up to 3.8) by the same method used for PBHMO, is more soluble and lower melting (165°C) than PBHMO, appears to be atactic and can be compression molded at 195°C to a tough, clear film which is readily oriented. Copolymers of BHMO with MHMO are crystalline over the entire composition range with a linear variation of Tm with composition, a new example of isomorphism in the polymer area.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3113-3149 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The spontaneous polymer formed from 3-hydroxyoxetane (HO), as first reported by Wojtowicz and Polak, is linear, low molecular weight, water-soluble, atactic, poly(3-hydroxyoxetane) (PHO) of high crystallinity with —OCH2CH(OH)CH2OH end units. The highly crystalline nature of this atactic polymer may be related to the crystalline nature of atactic poly(vinyl alcohol) since PHO can be considered a copolymer of vinyl alcohol and formaldehyde. Spontaneous PHO apparently is formed in a cationic polymerization by the carboxylic acids produced by the air oxidation of HO on standing at room temperature for several months. The polymerization can be duplicated by the addition of 2% hydroxyacetic acid to HO. The rate of this unusual cationic polymerization increases greatly with acid strength, e.g., trifluoromethanesulfonic acid reacts explosively with pure HO. A mechanism is proposed for this cationic polymerization. High molecular weight, water-soluble, linear atactic, and highly crystalline PHO (mp = 155°C) was made by polymerizing the trimethylsilyl ether of HO with the i-Bu3Al-0.7 H2O cationic catalyst followed by hydrolysis. Two 1H-NMR methods for measuring the tacticity of PHO were developed based on finding two different types of methylene units at 400 MHz with the methine protons decoupled. Also, an 1H-NMR method was developed for measuring branching in HO polymers. High molecular weight, linear PHO with enhanced isotacticity (80%) has been obtained in low yield as a water-insoluble fraction with Tm = 223°C. The low molecular weight PHO prepared previously by the base-catalyzed, rearrangement polymerization of glycidol is highly branched.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 29 (1991), S. 1421-1438 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chelate catalyst, as typified by the Et3Al-0.5 H2O-0.5 acetylacetone product, usually prepared with Et2O or tetrahydrofuran (THF) present, has all the known characteristics of a coordination catalyst for polymerizing epoxides and uniquely for oxetanes. We have found that the chelate catalyst gives fairly good copolymerization of THF (54% in monomer charge) with 3-(trimethylsilyloxy) oxetane which, after hydrolysis, is a water-soluble, moderate molecular weight copolymer of THF (36%) with 3-hydroxyoxetane (HO). This apparent coordination copolymerization of THF has been extended to trimethylene oxide (TMO), 3,3-bis(trimethylsilyoxymethyl) oxetane, 3,3-bis(chloromethyl)oxetane (BCMO), trans-2,3-epoxybutane (TBO), and propylene oxide, listed in order of decreasing copolymerizability with THF. Presumably, this is the first known coordination copolymerization of THF which hitherto has only been polymerized with cationic catalysts. Oxepane also copolymerizes coordinately with TMO and BCMO, but less readily than THF, with the chelate catalyst. TBO polymerizes slowly with the chelate catalyst to form stereoregular polymer which can be separated into an acetone-insoluble, highly stereoregular fraction and an acetone-soluble, somewhat less stereoregular fraction. The soluble fraction can be eliminated by using 1.0 acetyl acetone per Al in the catalyst or by adding a small amount of a very strong base (0.09 quinuclidine per Al). The copolymerization of TBO with THF (39%) gives insoluble stereoregular homopolymer and soluble copolymer containing about 23% THF, reflecting the varied steric hindrance of the sites.Some anomalous results appear to be related to the mechanism: (1) steric and electronic factors of the monomers and of the polymerization site. For example, the fourth coordination position of Al is needed to achieve homopolymerization of BCMO and TMO-THF copolymerization. (2) The aggregation state of the catalyst, since a nonpolar diluent as toluene is unfavorable for coordination copolymerization of THF. (3) The greater ring strain of epoxides causes a greater ease of polymerization, compared to oxetanes. Thus, Et2O often present in the chelate catalyst lowers the molecular weight of the polymer considerably with oxetanes compared to epoxides where Et2O has little or no effect.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 749-758 
    ISSN: 0887-6266
    Keywords: isomorphism ; poly (3,3-bis-oxetane) ; fiber diffraction ; solid state NMR ; copolymers ; co-polyoxetanes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Copolymers of 3,3-bis-hydroxymethyloxetane, BHMO, 3-metyl-3-hydroxymethyloxetane, MHMO, or with 3-ethyl-3-hydroxymethyloxetane, EHMO, monomer units were characterized by x-ray fiber diffraction, differential scanning calorimetry and 13C solid-state nuclear magnetic resonance (NMR). The copolymers are statistically random and crystalline throughout the range of compositions. Both P(BHMO) and P(MHMO) appear to crystallize in the same crystal form. The fiber repeat indicates a planar zigzag backbone conformation, c(fiber axis) = 4.77 ± 0.03 Å. Similarities in the x-ray fiber diagrams as well as a linear dependence of Tm with composition of copolymer with no change in fiber diagrams indicates isomorphism, a phenomenon in which the random substitution of MHMO monomeric units into the crystalline lattice of P(BHMO) occurs without hindering crystallization of the resulting copolymer. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 48 (1993), S. 107-111 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Gas transport properties for poly(3-hydroxyoxetane) (PHO) were measured for five gases at 35°C. While PHO has very low gas permeability coefficients, they are larger than those reported for polyacrylonitrile (PAN), poly(vinyl alcohol) (PVA1) and copolymers of ethylene / vinyl alcohol (EVAL) for all gases tested except He. The permeability coefficients for PHO and EVAL are well correlated with the density of hydroxyl groups along the chain. Extrapolations to PVA1 give values that agree well with those estimated by Salame using the Permachor method. It is suggested that some of the reported experimental values for PVA1 are in error. © 1993 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...