ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-09-01
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-01
    Description: Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake. © 2017. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-23
    Description: Highlights • An unprecedented detailed tectono-thermal history of a magma-poor margin is revealed. • Deformation mechanisms laterally vary across active faults during extreme extension. • Mantle hydration occurs through brittle deformation in the footwalls of active faults. • Detachments form through ductile shearing in the hangingwalls of active faults. • Detachment formation is a byproduct but not a root cause of margin asymmetry. Abstract A long-standing problem in solid Earth science is to understand how low-angle normal faults form, their role in the development of tectonic asymmetry of conjugate margins, and how they relate to mantle hydration during continental breakup. The latter requires water to reach the mantle through active brittle faults, but low angle slip on faults is mechanically difficult. Here, we incorporate observations from high-resolution multichannel seismic data along the West Iberia-Newfoundland margins into a 2D forward thermo-mechanical model to understand the relationship between evolving rift asymmetry, detachment tectonics, and mantle hydration. We show that, during extreme extension, slip on active faults bifurcates at depth into brittle and ductile deformation branches, as a result of the cooling of the faults' footwall and heating of their hangingwall. The brittle deformation penetrates the Moho and leads to mantle hydration, while ductile deformation occurs in localized shear zones and leads to the formation of detachment-like structures in the distal margin sections. Such structures, as for example ‘S’ in the West Iberia-Newfoundland margins, are thus composed of several shear zones, active at low-angles, ∼25°-20°, and merging with the Moho at depth. The final sub-horizontal geometry of these structures is the result of subsequent back-rotation of these shear zones by new oceanward faults. Our results reproduce remarkably well the final sedimentary, fault, crustal architecture, and serpentinisation pattern observed at the West Iberia-Newfoundland margins. However, they challenge widely accepted ideas that such detachment-like structures formed by brittle processes, separate crust from mantle and caused conjugate margin asymmetry. Our model provides a quantitative framework to study hydrothermal systems related to serpentinization during extreme extension, their associated hydrogen, methane production, and the chemosynthetic life they sustain.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...