ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The Modular Containerless Processing Facility (MCPF) of the Space Station Freedom, being developed by the Jet Propulsion Laboratory, is described. The MCPF will be capable of positioning, manipulating, and performing processing operations on samples completely free of container walls. It will be comprised of a host facility and a series of interchangeable plug-in modules. Initial iterations of MCPF modules will be flown on the U.S. Microgravity Laboratory (USML) series of Shuttle flights. The Drop Physics Module schedualed to fly on USML-1 in March 1992 is also considered.
    Keywords: MATERIALS PROCESSING
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: SpaceOps 1992: Proceedings of the Second International Symposium on Ground Data Systems for Space Mission Operations; p 45-50
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 26th Project Integration Meeting; p 199-221
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: Remote sensing of emitted radiance form the Earth's surface in the thermal infrared region (8 to13??is useful for geologic studies including lithology and soil and mineral mapping. Since 1982, new airborne, field portable and spaceborne instruments have been demonstrating the advantages of multispectral measurements in this region for geologic applications. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), presently being built in Japan is the newest of the spaceborne multispectral instruments.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A method and apparatus are described which facilitate the growing of silicon ribbon. A container for molten silicon has a pair of passages in its bottom through which filaments extend to a level above the molten silicon, so as the filaments are pulled up they drag up molten silicon to form a ribbon. A pair of guides surround the filaments along most of the height of the molten silicon, so that the filament contacts only the upper portion of the melt. This permits a filament to be used which tends to contaminate the melt if it is in long term contact with the melt. This arrangement also enables a higher melt to be used without danger that the molten silicon will run out of any bottom hole.
    Keywords: SOLID-STATE PHYSICS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.
    Keywords: SOLID-STATE PHYSICS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.
    Keywords: SOLID-STATE PHYSICS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A method for growing a high purity, low defect layer of semiconductor is described. This method involves depositing a patterned mask of a material impervious to impurities of the semiconductor on a surface of a blank. When a layer of semiconductor is grown on the mask, the semiconductor will first grow from the surface portions exposed by the openings in the mask and will bridge the connecting portions of the mask to form a continuous layer having improved purity, since only the portions overlying the openings are exposed to defects and impurities. The process can be iterated and the mask translated to further improve the quality of grown layers.
    Keywords: SOLID-STATE PHYSICS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A nozzle assembly in a multi-element spherical shell generation system includes first and second side-by-side spaced apart nozzles and a web portion extending between and connecting the nozzles. The first nozzle has an inner orifice adapted to discharge a first filler material and an outer annular orifice separated from and defined in concentric relation about the inner orifice and adapted to discharge a first shell material. The second nozzle has an inner orifice adapted to discharge a second filler material and an outer annular orifice separated from and defined in concentric relation about the inner orifice and adapted to discharge a second shell material. A multi-element spherical shell can be formed through employment of the nozzle assembly by merger with one another after discharge from the outer orifices of the nozzles of a pair of adjacent annular streams of liquid or molten shell wall material of different compositions and encapsulation by the mixed shell wall materials of a common encapsulated core fluids also simultaneously discharged by the inner orifices nozzles. On the other hand, the pair of encapsulating streams of shell wall material can be of the same materials which merge together and encapsulate core fluids of different compositions which will merge together after discharge from the nozzles.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A self-adjusting choke for a fluids nozzle includes a membrane constructed of a single piece of flexible or elastic material. This flexible material is shaped to fit into the outlet of a nozzle. The body of the membrane has at least two flow channels, from one face to the other, which directs two streams of water to cross at the opening of the nozzle or at some point beyond. The elasticity and thickness of the membrane is selected to match the range of expected pressures and fluid velocities. The choke may have more than two flow channels, as long as they are aligned adjacent to one another and directed towards each other at the exit face. In a three orifice embodiment, one is directed upward, one is directed downward, and the one in the middle is directed forward. In this embodiment all three fluid streams intersect at some point past the nozzle opening. Under increased pressure the membrane will deform causing the orifices to realign in a more forward direction, causing the streams to intersect at a smaller angle. This reduces the force with which the separate streams impact each other, still allowing the separate streams to unify into a single stable spiralling stream in spite of the increased pressure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...