ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Atmospheric science. ; Measurement. ; Measuring instruments. ; Geographic information systems. ; Lasers. ; Outer space Exploration. ; Astronautics. ; Atmospheric Science. ; Measurement Science and Instrumentation. ; Geographical Information System. ; Laser. ; Space Exploration and Astronautics.
    Description / Table of Contents: Chapter 1. Rotational Raman scattering through narrow-band interference filters: investigating uncertainties using a new Rayleigh scattering code developed within ACTRIS -- Chapter 2. Performance of Low-Cost, Diode-Based HSRL System with Simplified Optical Setup -- Chapter 3. Sensitivity Study on the Performance of the Single Calculus Chain Aerosol Layering Module -- Chapter 4. Particle Complex Refractive Index From 3+2 HSRL/Raman Lidar Measurements: Conditions of Accurate Retrieval, Uncertainties and Constraints Provided by Information About RH -- Chapter 5. Field Testing of a Diode-Laser-Based Micro Pulse Differential Absorption Lidar System to Measure Atmospheric Thermodynamic Variables -- Chapter 6. SEMICONDUCTOR LIDAR FOR QUANTITATIVE ATMOSPHERIC PROFILING -- Chapter 7. Atomic Barium Vapor Filter for Ultraviolet High Spectral Resolution Lidar -- Chapter 8. Future Lidars for Cutting-Edge Sciences in Ionosphere-Thermosphere-Mesosphere-Stratosphere Physics and Space-Atmosphere Coupling -- Chapter 9. Polarization Lidar for Monitoring Dust Particle Orientation: First Measurements -- Chapter 10. Dust flow distribution measurement by low coherence Doppler lidar -- Chapter 11. A Multi-wavelength LED lidar for near ground atmospheric monitoring -- Chapter 12. Development of low-cost high-spectral-resolution lidar using compact multimode laser for air quality measurement -- Chapter 13. Deep Learning Based Convective Boundary Layer Determination for Aerosol and Wind Profiles observed by Wind Lidar -- Chapter 14. LITES: Laboratory Investigations of Atmospheric Aerosol Composition by Raman-Scattering and Fluorescence Spectra -- Chapter 15. Performance Simulation of a Raman Lidar for the Retrieval of CO2 Atmospheric Profiles -- Chapter 16. ALL FIBER FREE-RUNNING DUAL-COMB RANGING SYSTEM -- Chapter 17. gPCE Uncertainty Quantication Modeling of LiDAR for Bathymetric and Earth Science Applications -- Chapter 18. When can Poisson random variables be approximated as Gaussian? -- Chapter 19. Enhancing the Performance of the MicroPulse DIAL through Poisson Total Variation Signal Processing -- Chapter 20. Development of Micro Pulse Lidar Network (MPLNET) Level 3 Satellite Validation Products in Advance of the EarthCARE Mission -- Chapter 21. 3D Point Cloud Classification using Drone-based Scanning LIDAR and Signal Diversity -- Chapter 22. Design and Validation of an Elastic Lidar Simulator for Testing Potential New Systems for Aerosol Typing -- Chapter 23. Performance of Pulsed Wind Lidar Based on Optical Hybrid -- Chapter 24. Demonstrating Capabilities of Multiple-Beam Airborne Doppler Lidar Using a LES-based Simulator -- Chapter 25. All-Solid State Iron Resonance Lidar for Measurement of Temperature and Winds in the Upper Mesosphere and Lower Thermosphere -- Chapter 26. Improved Remote Operation Capabilities for the NASA GSFC Tropospheric Ozone Lidar for Routine Ozone Profiling for Satellite Evaluation -- Chapter 27. A wind, temperature, H2O and CO2 scanning lidar mobile observatory for a 3D thermodynamic view of the atmosphere -- Chapter 28. Low-Cost and Lightweight Hyperspectral Lidar for Mapping Vegetation Fluorescence -- Chapter 29. SO2 Plumes Observation with LMOL: Theory, Modeling, and Validation -- Chapter 30. Possible Use of Iodine Absorption/Fluorescence Cell in High-Spectral-Resolution Lidar -- Chapter 31. Ten Years of Interdisciplinary Lidar Applications at SCNU, Guangzhou -- Chapter 32. Feasibility studies of the dual-polarization imaging lidar based on the division-of-focal-plane scheme for atmospheric remote sensing -- Chapter 33. An Algorithm to Retrieve Aerosol Optical Properties from ATLID and MSI Measurements -- Chapter 34. Observation of Polar Stratospheric Clouds at Dome C, Antarctica -- Chapter 35. Laboratory Evaluation of the Lidar Particle Depolarization Ratio (PDR) of Sulfates, Soot, and Mineral Dust at 180.0° Lidar Backscattering Angle -- Chapter 36. Fresh biomass burning aerosol observed in Potenza with multiwavelength Raman Lidar and sun-photometer -- Chapter 37. Aerosol Studies with Spectrometric Fluorescence and Raman Lidar -- Chapter 38. Continuous Observations of Aerosol-Weather Relationship from a Horizontal Lidar to Simulate Monitoring of Radioactive Dust in Fukashima, Japan -- Chapter 39. Statistical Simulation of Laser Pulse Propagation through Cirrus-cloudy Atmosphere -- Chapter 40. Aerosol Spatial Distribution Observed by a Mobile Vehicle Lidar with Optics for Near Range Detection -- Chapter 41. Cloud Base Height Correlation between a Co-located Micro-Pulse Lidar and a Lufft CHM15k Ceilometer -- Chapter 42. Comparison of Local and Transregional Atmospheric Particles Over the Urmia Lake in Northwest Iran, Using a Polarization Lidar Recordings -- Chapter 43. Properties of Polar Stratospheric Clouds over the European Arctic from Ground-Based Lidar -- Chapter 44. Two decades analysis of cirrus cloud radiative effects by lidar observations in the frame of NASA MPLNET lidar network -- Chapter 45. Temporal Variability of the Aerosol Properties Using a Cimel Sun/Lunar Photometer over Thessaloniki, Greece: Synergy With the Upgraded THELISYS Lidar System -- Chapter 46. Long-Term Changes of Optical Properties of Mineral Dust and Its Mixtures Derived from Raman Polariza-tion Water Vapor Lidar in Central Europe -- Chapter 47. Planetary Boundary Layer Height Measurements Using MicroPulse DIAL -- Chapter 48. Performance Modeling of a Diode-Laser-Based Direct Detection Doppler Lidar -- Chapter 49. Observation of Water Vapor Profiles by Raman Lidar with 266 nm laser in Tokyo -- Chapter 50. A 355-NM DIRECT-DETECTION DOPPLER WIND LIDAR FOR VERTICAL ATMOSPHERIC MOTION -- Chapter 51. Aircraft Wake Vortex Recognition and Classification Based on Coherent Doppler Lidar and Convolutional Neural Networks -- Chapter 52. MicroPulse Differential Absorption Lidar for Temperature Retrieval in the Lower Troposphere -- Chapter 53. Long Term Calibration of a Pure Rotational Raman Lidar for Temperature Measurements Using Radiosondes and Solar Background -- Chapter 54. Powerful Raman-Lidar for water vapor in the free troposphere and lower stratosphere as well as temperature in the stratosphere and mesosphere -- Chapter 55. Observation of Rainfall Velocity and Raindrop Size Using Power Spectrum of Coherent Doppler Lidar -- Chapter 56. Comparison of Lower Tropospheric Water Vapor Vertical Distribution Measured with Raman lidar and DIAL and Their Impact of Data Assimilation in Numerical Weather Prediction Model -- Chapter 57. Temperature Variations in the Middle Atmosphere Studied with Rayleigh Lidar at Haikou (19.9°N, 110.3°E) -- Chapter 58. Convective boundary layer sensible and latent heat flux lidar observations and towards new model parametrizations -- Chapter 59. Observation of Structure of Marine Atmospheric Boundary Layer by Ceilometer over the Kuroshio Current.-Chapter 60. ABL Height Different Estimation by Lidar in the Frame of HyMeX SOP1 Campaign -- Chapter 61. Temporal Evolution of Wavelength and Orientation of Atmospheric Canopy Waves -- Chapter 62. Assessment of Planetary Boundary Layer Height Variations over a Mountain Region in Western Himalayas -- Chapter 63. Analysis of Updraft Characteristics from an Airborne Micro-Pulsed Doppler Lidar During FIREX-AQ -- Chapter 64. Diurnal Variability of MLH and Ozone in NYC Urban and Coastal Area from an Integrated Observation during LISTOS 2018 -- Chapter 65. Boundary Layer Dynamics, Aerosol Composition, and Air Quality in the Urban Background of Stuttgart in Winter -- Chapter 66. DIAL Ozone Measurement Capability Added to NASA’s HSRL-2 Instrument Demonstrates Troposheric Ozone Variability Over Houston Area -- Chapter 67. Trajectory Analysis of CO2 Concentration Increase Events in the Nocturnal Atmospheric Boundary Layer Observed by the Differential Absorption Lidar -- Chapter 68. Efficiency Assessment of Single Cell Raman Gas Mixture for DIAL Ozone Lidar -- Chapter 69. COmpact RamaN lidar for Atmospheric CO2 and ThERmodyNamic ProfilING - CONCERNING -- Chapter 70. Characterization of Recent Aerosol Events Occurring in the Subtropical North Atlantic Region Using a CIMEL CE376 GPN Micro-LiDAR -- Chapter 71. Tropospheric Ozone Differential Absorption Lidar (DIAL) Development at New York City -- Chapter 72. Accounting for the polarizing effects introduced from non ideal quarter-wave plates in lidar measurements of the circular depolarization ratio -- Chapter 73. Investigating the geometrical and optical properties of the persistent stratospheric aerosol layer observed over Thessaloniki, Greece during 2019 -- Chapter 74. New Lidar Data Processing Techniques for Improving the Detection Range and Accuracy of Atmospheric Gravity Wave Measurements -- Chapter 75. Extending the Useful Range of Fluorescence LIDAR Data by Applying the Layered Binning Technique -- Chapter 76. Interaction between sea wave and surface atmosphere by shallow angle LED lidar -- Chapter 77. First results of the COLOR (CDOM-proxy retrieval from aeOLus ObseRvations) project -- Chapter 78. Dual wavelength heterodyne LDA for velocity and size distribution measurements in ocean water flows -- Chapter 79. Mitigation Strategy for the Impact of Low Energy Laser Pulses in CALIOP Calibration and Level 2 Retrievals -- Chapter 80. Introducing the Cloud Aerosol Lidar for Global Scale Observations of the Ocean-Land-Atmosphere System – CALIGOLA -- Chapter 81. An Overview of the NASA Atmosphere Observing System Inclined Mission (AOS-I) and the Role of Backscatter Lidar -- Chapter 82. Proposal for the Space-borne Integrated Path Differential Absorption (IPDA) Lidar for Lower Tropospheric Water Vapor Observations -- Chapter 83. Assimilation of Aerosol Observations from the Future Spaceborne Lidar Onboard the AOS Mission into the MOCAGE Chemistry-Transport Model -- Chapter 84. Aerosol Optical Properties over Western Himalayas Region by Raman Lidar during the December 2019 Annular Solar Eclipse -- Chapte.
    Abstract: This volume presents papers from the biennial International Laser Radar Conference (ILRC), the world’s leading event in the field of atmospheric research using lidar. With growing environmental concerns to address such as air quality deterioration, stratospheric ozone depletion, extreme weather events, and changing climate, the lidar technique has never been as critical as it is today to monitor, alert, and help solve current and emerging problems of this century. The 30th occurrence of the ILRC unveils many of the newest results and discoveries in atmospheric science and laser remote sensing technology. The 30th ILRC conference program included all contemporary ILRC themes, leveraging on both the past events’ legacy and the latest advances in lidar technologies and scientific discoveries, with participation by young scientists particularly encouraged. This proceedings volume includes a compilation of cutting-edge research on the following themes: new lidar techniques and methodologies; measurement of clouds and aerosol properties; atmospheric temperature, wind, turbulence, and waves; atmospheric boundary layer processes and their role in air quality and climate; greenhouse gases, tracers, and transport in the free troposphere and above; the upper mesosphere and lower thermosphere; synergistic use of multiple instruments and techniques, networks and campaigns; model validation and data assimilation using lidar measurements; space-borne lidar missions, instruments and science; ocean lidar instrumentation, techniques, and retrievals; and past, present and future synergy of heterodyne and direct detection lidar applications. In addition, special sessions celebrated 50 years of lidar atmospheric observations since the first ILRC, comprising review talks followed by a plenary discussion on anticipated future directions.
    Type of Medium: Online Resource
    Pages: XXIV, 892 p. 374 illus., 352 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9783031378188
    Series Statement: Springer Atmospheric Sciences,
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-01
    Description: During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-06
    Description: Two tailored configurations of the Robust Satellite Technique (RST) multi-temporal approach, for airborne volcanic ash and desert dust detection, have been tested in the framework of the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) project. The two algorithms, running on Spinning Enhanced Visible Infra-Red Imager (SEVIRI) data, were previously assessed over wide areas by comparison with independent satellite-based aerosol products. In this study, we present results of a first validation analysis of the above mentioned satellite-based ash/dust products using independent, ground-based observations coming from the European Aerosol Research Lidar Network (EARLINET). The aim is to assess the capabilities of RST-based ash/dust products in providing useful information even at local scale and to verify their applicability as a “trigger” to timely activate EARLINET measurements during airborne hazards. The intense Saharan dust event of May 18–23 2008—which affected both the Mediterranean Basin and Continental Europe—and the strong explosive eruptions of Eyjafjallajökull (Iceland) volcano of April–May 2010, were analyzed as test cases. Our results show that both RST-based algorithms were capable of providing reliable information about the investigated phenomena at specific sites of interest, successfully detecting airborne ash/dust in different geographic regions using both nighttime and daytime SEVIRI data. However, the validation analysis also demonstrates that ash/dust layers remain undetected by satellite in the presence of overlying meteorological clouds and when they are tenuous (i.e., with an integrated backscatter coefficient less than ~0.001 sr−1 and with aerosol backscatter coefficient less than ~1 × 10−6 m−1sr−1). This preliminary analysis confirms that the continuity of satellite-based observations can be used to timely “trigger” ground-based LIDAR measurements in case of airborne hazard events. Finally, this work confirms that advanced satellite-based detection schemes may provide a relevant contribution to the monitoring of ash/dust phenomena and that the synergistic use of (satellite-based) large scale, continuous and timely records with (ground-based) accurate and quantitative measurements may represent an added value, especially in operational scenarios.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-12
    Description: Volcanic eruptions comprise an important airborne hazard for aviation. Although significant events are rare, e.g. compared to the threat of thunderstorms, they have a very high impact. The current state of tools and abilities to mitigate aviation hazards associated with an assumed volcanic cloud was tested within an international demonstration exercise. Experts in the field assembled at the Schwarzenberg barracks in Salzburg, Austria, in order to simulate the sequence of procedures for the volcanic case scenario of an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection (based on artificial observations) of the assumed event to the issuance of early warnings. Volcanic-emission-concentration charts were generated applying modern ensemble techniques. The exercise products provided an important basis for decision-making for aviation traffic management during a volcanic-eruption crisis. By integrating the available wealth of data, observations and modelling results directly into widely used flight-planning software, it was demonstrated that route optimization measures could be implemented effectively. With timely and rather precise warnings available, the new tools and processes tested during the exercise demonstrated vividly that a vast majority of flights could be conducted despite a volcanic plume being widely dispersed within a high-traffic airspace over Europe. The resulting number of flight cancellations was minimal.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-09-15
    Description: A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2019-12-13
    Description: Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values 〉 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-06
    Description: We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59 % (minimum) and 90 % (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80 %. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-25
    Description: Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation and military authorities, solar energy plant managers, climate services providers, and health professionals. Owing to the complexity of atmospheric aerosol processes and their sensitivity to the underlying meteorological conditions, the prediction of aerosol particle concentrations and properties in the numerical weather prediction (NWP) framework faces a number of challenges. The modeling of numerous aerosol-related parameters increases computational expense. Errors in aerosol prediction concern all processes involved in the aerosol life cycle including (a) errors on the source terms (for both anthropogenic and natural emissions), (b) errors directly dependent on the meteorology (e.g., mixing, transport, scavenging by precipitation), and (c) errors related to aerosol chemistry (e.g., nucleation, gas–aerosol partitioning, chemical transformation and growth, hygroscopicity). Finally, there are fundamental uncertainties and significant processing overhead in the diverse observations used for verification and assimilation within these systems. Indeed, a significant component of aerosol forecast development consists in streamlining aerosol-related observations and reducing the most important errors through model development and data assimilation. Aerosol particle observations from satellite- and ground-based platforms have been crucial to guide model development of the recent years and have been made more readily available for model evaluation and assimilation. However, for the sustainability of the aerosol particle prediction activities around the globe, it is crucial that quality aerosol observations continue to be made available from different platforms (space, near surface, and aircraft) and freely shared. This paper reviews current requirements for aerosol observations in the context of the operational activities carried out at various global and regional centers. While some of the requirements are equally applicable to aerosol–climate, the focus here is on global operational prediction of aerosol properties such as mass concentrations and optical parameters. It is also recognized that the term “requirements” is loosely used here given the diversity in global aerosol observing systems and that utilized data are typically not from operational sources. Most operational models are based on bulk schemes that do not predict the size distribution of the aerosol particles. Others are based on a mix of “bin” and bulk schemes with limited capability of simulating the size information. However the next generation of aerosol operational models will output both mass and number density concentration to provide a more complete description of the aerosol population. A brief overview of the state of the art is provided with an introduction on the importance of aerosol prediction activities. The criteria on which the requirements for aerosol observations are based are also outlined. Assimilation and evaluation aspects are discussed from the perspective of the user requirements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-19
    Description: The MACC reanalysis dust product is evaluated over Europe, northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550 nm (DOD550) data are compared against LIVAS DOD532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1 km a.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550 nm are compared against dust extinction coefficient profiles at 532 nm from LIVAS, assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD550 patterns are close to the LIVAS DOD532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds ∼ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 (∼ 25 %) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over northern Africa and the Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000 m a.s.l., layer 2: 3000–4800 m a.s.l., layer 3: 4800–6600 m a.s.l. and layer 4: 6600–8400 m a.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first three layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (the Sahara and Middle East) it underestimates strongly only for heights below ∼ 3–5 km a.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9 km a.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...