ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-26
    Description: The role of zooplankton in microbial nitrogen turnover in marine environments is poorly understood. Here, we present results from two experiments designed to determine the excretion rate of ammonium and dissolved organic nitrogen (DON) by dominant copepods, Acartia tonsa and Paracalanus cf indicus , fed with two natural sized-fractioned diets (20–150 μm and 〈 20 μm), and its possible effects on the transcriptional activity of ammonia monooxygenase subunit A ( amoA ), a functional marker for ammonia-oxidizing archaea (AOA) and bacteria (AOB), as a response to the input of ammonium and DON by copepod excretion, during autumn and winter in central/southern Chile. Our results reveal that DON was the main excretion product, with rates up to 3.7 μmol L −1 h −1 . DON production increased in copepods fed with the small-sized food. Ammonium was also excreted, with rates up to 0.08 μmol L −1 h −1 in autumn and 0.4 μmol L −1 h −1 in winter, and rapidly consumed by the microbial community, decreasing down to 0.07 μmol L −1 between the initial time to 4 h. Ammonium consumption coincided with increased AOB and AOA amoA transcript copies in copepods fed with the larger-sized food, while a different microbial community, probably heterotrophic, reacted to nitrogen input via excretion by copepods fed with the smaller-sized food in autumn. AOA-A was transcriptionally active in winter with nearly zero ammonium concentration, suggesting that AOA outcompete AOB when ammonium becomes limited. We conclude that nitrogen excreted by copepods can be used directly by microbial communities, including nitrifying ones. Zooplankton excretion may thus provide significant remineralized nitrogen for new and regenerated production in the upper ocean.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-12
    Description: The Amazon forests and climatological precipitation patterns in South America are interrelated. A fundamental question is how these patterns depend on the presence of forests. Here we investigate this relationship by studying how precipitation varies with distance from the ocean along wind streamlines linking the Atlantic Ocean to northwestern and southern South America through the Amazon forests. Through a robust observation-based analysis, we found that precipitation exponentially increases with distance from the ocean along wind streamlines flowing over forests, while it exponentially decreases downwind of the forests. These patterns are consistent with multiple mechanisms through which forests influence the transport of atmospheric moisture and precipitation production over the continent. We propose a conceptual explanation of this forest influence based on the atmospheric water balance. Our results imply that a major consequence of the degradation or loss of forests may be a disruption of these mechanisms, with widespread impacts on continental precipitation. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-27
    Description: The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-23
    Description: The enormous mammal’s lifespan variation is the result of each species’ adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...