ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436.2005, 7049, E1-, (1 S.) 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arising from: P. A. Allen & P. F. Hoffman Nature 433, 123–127 (2005); Allen and Hoffman reply. Quantitative estimation of environmental properties using sedimentary structures preserved in rocks is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: This set of functions allows one to compute the radius of curvature of a river in planform for the purpose of making correlations with other geometric parameters of a channel. The code may also be used to compute the width of a channel.
    Type: Dataset
    Format: application/zip, 427.8 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-16
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Palermo, R., Piliouras, A., Swanson, T. E., Ashton, A. D., & Mohrig, D. The effects of storms and a transient sandy veneer on the interannual planform evolution of a low-relief coastal cliff and shore platform at Sargent Beach, Texas, USA. Earth Surface Dynamics, 9(5), (2021): 1111–1123, https://doi.org/10.5194/esurf-9-1111-2021.
    Description: Coastal cliff erosion is alongshore-variable and episodic, with retreat rates that depend upon sediment as either tools of abrasion or protective cover. However, the feedbacks between coastal cliff planform morphology, retreat rate, and sediment cover are poorly quantified. This study investigates Sargent Beach, Texas, USA, at the annual to interannual scale to explore (1) the relationship between temporal and spatial variability in cliff retreat rate, roughness, and sinuosity and (2) the response of retreat rate and roughness to changes in sand and shell hash cover of the underlying mud substrate as well as the impact of major storms using field measurements of sediment cover, erosion, and aerial images to measure shore platform morphology and retreat. A storm event in 2009 increased the planform roughness and sinuosity of the coastal cliff at Sargent Beach. Following the storm, aerial-image-derived shorelines with annual resolution show a decrease in average alongshore erosion rates from 12 to 4 m yr−1, coincident with a decrease in shoreline roughness and sinuosity (smoothing). Like the previous storm, a storm event in 2017 increased the planform roughness and sinuosity of the cliff. Over shorter timescales, monthly retreat of the sea cliff occurred only when the platform was sparsely covered with sediment cover on the shore platform, indicating that the tools and cover effects can significantly affect short-term erosion rates. The timescale to return to a smooth shoreline following a storm or roughening event, given a steady-state erosion rate, is approximately 24 years, with the long-term rate suggesting a maximum of ∼107 years until Sargent Beach breaches, compromising the Gulf Intracoastal Waterway (GIWW) under current conditions and assuming no future storms or intervention. The observed retreat rate varies, both spatially and temporally, with cliff face morphology, demonstrating the importance of multi-scale measurements and analysis for interpretation of coastal processes and patterns of cliff retreat.
    Description: This research has been supported by the National Science Foundation (grant no. 1745302).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-18
    Description: Fine-grained sediment (grain size under 2,000 μm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 μm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    Publication Date: 2012-07-01
    Description: Breaching is a style of retrogressive subaqueous slope failure controlled by dilation and consequent pore pressure drop; it has the potential to generate turbidity currents that build thick successions of turbidites. we present pore pressure measurements made during breaching failure, as well as a physical model that shows how the pore pressure field within the failing deposit is connected to the erosion rate associated with the failure surface. we show that breaching can occur in any dilative granular material. conditions for breaching could be common on the continental shelf, making it an important mechanism in transferring sediment into the deep ocean. a dynamic equilibrium exists between the slope failure and the pore pressure dissipation during breaching. this equilibrium leads to a way to estimate the rate of sediment release from breaching using a simple material property, the coefficient of consolidation. contrary to previous work, we find that the erosion rate is independent of the dilation of the deposit due to the coupling between erosion and pore pressure dissipation. the equilibrium between the erosion and pore pressure dissipation decouples the steady-state pore pressure field from the permeability of the deposit; this is the first time this behavior has been recognized in sediment failures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-01
    Description: Where rivers near the coastline, the receiving basin begins to influence flow, and gradually varied, nonuniform flow conditions arise. The section of the river affected by nonuniform flow is typically referred to as the backwater segment, and for large lowland rivers, this portion of the river can extend many hundreds of kilometers above the outlet. River morphology and kinematics vary in the backwater segment; however, these channel properties have not been explicitly related to properties of the flow and sediment-transport fields. This study examines the influence of spatially and temporally varying flow velocity and sediment transport on channel properties for the lower 800 km of the Mississippi River, a section of the river that includes the backwater segment. Survey transects (n = 2650) were used to constrain the cross-sectional area of water flow every ~312 m along the Mississippi River channel for eight successive intervals of water discharge. Assuming conservation of water discharge, the local flow velocity was calculated at each transect by dividing water discharge by the local measurement of cross-sectional flow area. Calculated flow velocity was converted to total bed stress using a dimensionless friction coefficient that was determined by optimizing the match between a predicted and a measured water-surface profile. Estimates for the skin-friction component of the total bed stress were produced from the values for total shear stress using a form-drag correction. These skin-friction bed-stress values were then used to model bed-material transport. Results demonstrate that in the lower Mississippi River, cross-sectional flow area increases downstream during low- and moderate-water discharge. This generates a decrease in calculated water-flow velocity and bed-material transport. During high-water discharge, the trend is reversed: Cross-sectional flow area decreases downstream, producing an increase in calculated water-flow velocity and bed-material transport. An important contribution of this work is the identification of a downstream reversal in the trend for channel cross-sectional area due to variable water discharge. By accounting for the spatial divergences in sediment transport predicted over an average annual hydrograph, we demonstrate the tendency for channel-bed aggradation in much of the backwater reach of the Mississippi River (150–600 km above the outlet); however, a region of channel-bed erosion is calculated for the final 150 km. These results help to explain the spatial variability of channel morphology and kinematics for the lower Mississippi River, and they can be extended to other lowland river systems near the coastline.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-01
    Description: In the late 1800s, G.K. Gilbert provided the first stratigraphic description of river delta deposits, but later work revealed that the "Gilbert-type" model, long thought to be universal, did not apply to all deltas. Here we propose that, in addition to "Gilbert-type" deltas (herein called foreset-dominated), there is a class of deltas with a basic, first-order stratigraphy that is topset-dominated. We develop a geometric model that predicts the occurrence of each delta type by calculating the topset and foreset thicknesses under different fluvial and basinal conditions. Our model predicts that topset-dominated deltas have a novel characteristic: their distributary channels commonly incise into pre-delta sediment. This type of delta should be common on shelves where the slope is less than [~]0.05{degrees} and the river feeding the delta has a discharge greater than [~]200 m3/s. Field data from Gulf of Mexico deltas confirm the prediction that distributary channels often incise into pre-delta sediment. Finally, we propose a new stratigraphic model for topset-dominated deltas and suggest that future stratigraphic interpretation must distinguish between delta types because the cause of channel incision for each is different and may be unrelated to allogenic changes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-01
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-12
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-14
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...