ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 359-366 
    ISSN: 0006-3592
    Keywords: polymerase chain reaction ; DNA ; mathematical simulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model for polymerase chain reaction (PCR) is developed, taking into account the three steps in this process: melting of DNA; primer annealing; and DNA synthesis (polymerization). Activity and deactivation of the polymerase enzyme as a function of temperature is incorporated in the kinetic model to get a better understanding of the amplification of DNA. Computer simulation of the model is carried out to determine the effects of various parameters, such as the cycle number, initial DNA concentration (copynumber), initial enzyme concentration, extension time, temperature ramp, and enzyme deactivation on the DNA generation. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 359-366, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 399-407 
    ISSN: 0006-3592
    Keywords: lipase ; chiral kinetics ; organic solvent ; micelle ; emulsion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lipase from Pseudomonas cepacia was used for asymmetric hydrolysis of the substrate (±)1-chloro-2-acetoxy-3-(1-naphthyloxy)-propane, which is a precursor for (S)-(-)-β-blocker synthesis. Because this substrate is insoluble in water and partially soluble in hydrophobic solvents such as hexane and octane, a mixture of hydrophilic organic solvents and aqueous buffer was used to study the initial reaction rates. Because of the amphipathic nature of the substrate, it can remain in three different forms: (1) monomeric (solution); (2) micellar; and (3) emulsion, depending on the acetone and substrate concentrations in the medium. This behavior is presented in a phase diagram. The enzyme was found to be active with micelle as well as emulsion form of the substrate, whereas it showed negligible activity with the monomeric form. Michaelis-Menten constants were determined experimentally for the emulsion and micellar part of the substrate. The initial rate of hydrolysis (v0) goes through a maximum with respect to the acetone content of the mixture. It is due to the combined effect of various factors occurring simultaneously with the increase in acetone content in the solvent. These phenomena are discussed based on the interfacial activation of lipase, deactivation of the enzyme at very high acetone concentration, and increase in critical micelle concentration (CMC) and critical emulsion concentration (CEC) with the increase in acetone content in the solvent. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 399-407, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-18
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-11
    Description: One of the major challenges preventing the concentrated solar power (CSP) industry from occupying a greater portion of the world's energy portfolio are unattractive start up and operating costs for developers and investors. In order to overcome these reservations, plant designers must be able to achieve greater efficiencies of power production. Molten salt nitrates are ideal candidates for CSP heat transfer fluids and have been proposed to offer significant performance advantages over current silicone based oil heat transfer fluids. Ternary molten salt nitrates offer high operating temperatures while maintaining low freezing temperatures. However, a shortage of important thermophysical property data exists for these salts. Previous work has shown the ternary compositions of LiNO3–NaNO3–KNO3 salts offer the widest possible temperature range for use in a CSP system. The present work contains data for the viscosity, specific heat, and latent heat of some mixtures of these salts at various temperatures, providing vital information for plant designers to optimize power generation and attract future investment to CSP systems.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-07
    Description: Current heat transfer fluids for concentrated solar power applications are limited by their high temperature stability. Other fluids that are capable of operating at high temperatures have very high melting points. The present work is aimed at characterizing potential solar heat transfer fluid candidates that are likely to be thermally stable (up to 500 °C) with a lower melting point (∼100 °C). Binary and ternary mixtures of nitrates have the potential for being such heat transfer fluids. To characterize such eutectic media, both experimental measurements and analytical methods resulting in phase diagrams and other properties of the fluids are essential. Solidus and liquidus data have been determined using a differential scanning calorimeter over the range the compositions for each salt system and mathematical models have been derived using Gibbs Energy minimization. The Gibbs models presented in this paper sufficiently fit the experimental results as well as providing accurate predictions of the eutectic compositions and temperatures for each system. The methods developed here are expected to have broader implications in the identification of optimizing new heat transfer fluids for a wide range of applications, including solar thermal power systems.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...