ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers: Au, B〈sub〉4〈/sub〉C, diamond, Ni, polystyrene, Ru, Si, SiC, Si〈sub〉3〈/sub〉N〈sub〉4〈/sub〉 and W. Using classical Monte Carlo simulation in the atomic approximation, we study the dependence of the cascade size on the incident electron or photon energy and on the target parameters. The results show that an electron‐induced cascade is systematically larger than a photon‐induced cascade. Moreover, in contrast with the common assumption, the maximal cascade size does not necessarily coincide with the electron range. It was found that the cascade size can be controlled by careful selection of the photon energy for a particular material. Photon energy, just above an ionization potential, can essentially split the absorbed energy between two electrons (photo‐ and Auger), reducing their initial energy and thus shrinking the cascade size. This analysis suggests a way of tailoring the electron cascades for applications requiring either small cascades with a high density of excited electrons or large‐spread cascades with lower electron densities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers. Using classical Monte Carlo simulation in the atomic approximation, the dependence of the cascade size on the incident electron or photon energy and on the target parameters is studied.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2gb5123:jsy2gb5123-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; electron cascades ; X‐ray free‐electron lasers ; Monte Carlo ; photon‐induced cascade ; electron transport
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-29
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-01
    Description: The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.
    Print ISSN: 0909-0495
    Electronic ISSN: 1600-5775
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...