ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Marine Biological Laboratory, 2007. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 212 (2007): 185-194.
    Description: At deep-sea hydrothermal vents on the East Pacific Rise (9°50'N), distinct megafaunal assemblages are positioned along strong thermal and chemical gradients. We investigated the distribution of gastropod species to determine whether they associate with specific megafaunal zones and to determine the thermal boundaries of their habitats. Gastropods colonized a series of basalt blocks that were placed into three different zones characterized by vestimentiferan tubeworms, bivalves, and suspension-feeders, respectively. Additional gastropods were collected on selected blocks from higher temperature vestimentiferan habitat and from grab samples of alvinellid polychaetes. On the blocks, gastropod species clustered into a "Cool" group (Clypeosectus delectus, Eulepetopsis vitrea, Gorgoleptis spiralis, and Lepetodrilus ovalis) whose species tended to be most abundant in the suspension-feeder zone, and a "Warm" group (Lepetodrilus cristatus, L. elevatus, L. pustulosus, and Cyathermia naticoides) whose species all were significantly more abundant in the vestimentiferan zone than elsewhere. The temperature ranges of Cool species were generally lower than the ranges of Warm ones, although both groups were present at 3 to 6 °C; also present was Bathymargarites symplector, which clustered with neither group. Three additional species, Rhynchopelta concentrica, Neomphalus fretterae, and Nodopelta rigneae, co-occurred with Warm-group species on selected blocks from hotter habitats. Although a few species were found only in alvinellid collections, most species were not exclusive to a specific megafaunal zone. We propose that species in the Cool and Warm groups occupy specific microhabitats that are present in more than one zone.
    Description: This work was supported by NSF grants OCE-9712233 (co-PIs Chuck Fisher and Pete Peterson), OCE-9619605 (co-PIs Donal Manahan and Craig Young) and OCE- 0424953.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: The purpose of this guide is to assist researchers in the identification of larvae of benthic invertebrates at hydrothermal vents. Our work is based on plankton sampling at the East Pacific Rise 9-10°N vent field from 1991-2007, supplemented by benthic collections of juveniles. In addition to images and descriptions of the species, we included frequency data from large-volume plankton pump samples taken between 1998 and 2004 and time-series sediment trap samples from 2004-2005.
    Description: Funding provided by NSF grants OCE-9619605, OCE-9712233, OCE-0424593 and ATM-0428122 and ChEss Grant #WHOI 1334800.
    Keywords: Marine plankton ; Marine invertebrates ; Larvae
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 7829-7834, doi:10.1073/pnas.0913187107.
    Description: The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9°50’N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly 〉300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations.
    Description: Support was provided by NSF grants OCE-969105, OCE-9712233, and OCE-0424953), WHOI grants from DOEI and the Ocean Venture Fund, a NDSEG graduate fellowship to DA, and the WHOI Jannasch Chair for Excellence in Oceanography to LM.
    Keywords: Larval dispersal ; Population connectivity ; Ctenopelta ; Lepetodrilus ; East Pacific Rise
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 92 (2013): 46-57, doi:10.1016/j.dsr2.2013.03.032.
    Description: The vertical position of larvae of vent species above a mid-ocean ridge potentially has a strong effect on their dispersal. Larvae may be advected upward in the buoyant vent plume, or move as a consequence of their buoyancy or active swimming. Alternatively, they may be retained near bottom by the topography of the axial trough, or by downward swimming. At vents near 9°50’N on the axis of the East Pacific Rise, evidence for active larval positioning was detected in a comparison between field observations of larvae in the plankton in 2006 and 2007 and distributions of non-swimming larvae in a two-dimensional bio-physical model. In the field, few vent larvae were collected at the level of the neutrally buoyant plume (~75 m above bottom); their relative abundances at that height were much lower than those of simulated larvae from a near-bottom release in the model. This discrepancy was observed for many vent species, particularly gastropods, suggesting that they may actively remain near bottom by sinking or swimming downward. Near the seafloor, larval abundance decreased from the ridge axis to 1000 m off axis much more strongly in the observations than in the simulations, again pointing to behavior as a potential regulator of larval transport. We suspect that transport off axis was reduced by downward-moving behavior, which positioned larvae into locations where they were isolated from cross-ridge currents by seafloor topography, such as the walls of the axial valley – which are not resolved in the model. Cross-ridge gradients in larval abundance varied between gastropods and polychaetes, indicating that behavior may vary between taxonomic groups, and possibly between species. These results suggest that behaviorally mediated retention of vent larvae may be common, even for species that have a long planktonic larval duration and are capable of long-distance dispersal.
    Description: We gratefully acknowledge the support of NSF grants OCE-0424953 and OCE-0525361, which funded the Larval Dispersal on the Deep East Pacific Rise (LADDER) project. WHOI provided additional support to LSM as an Ocean Life Fellow, to DJM as the Holger Jannasch Chair for Excellence in Oceanography, and to JRL as the Edward W. and Betty J. Scripps Senior Scientist Chair. JWL was supported by the National Oceanic and Atmospheric Administration’s (NOAA) Vents Program and by NOAA’s Pacific Marine Environmental Laboratory.
    Keywords: Hydrothermal springs ; Deep water ; Larvae ; Mid-ocean ridges
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 491 (2013): 67-76, doi:10.3354/meps10463.
    Description: To predict how benthic communities will respond to disturbance, it is necessary to understand how disturbance affects the planktonic larval supply available to recolonize the area. Deep-sea hydrothermal vent fauna along the East Pacific Rise (EPR) experience frequent local extinctions due to tectonic and magmatic events, but the effects on regional larval abundance and diversity are unknown. We had been monitoring larvae at 9° 50' N on the EPR prior to the 2006 eruption and were able to resume collections shortly afterward. We found that many species that were common before the eruption became significantly less so afterward, whereas a few other species experienced a transient spike in abundance. Surprisingly, overall species richness in the plankton was high 9 mo after the eruption, but then decreased sharply after 1 yr and had not returned to pre-eruption levels after 2 yr. These results suggest that recovery from disturbance may continue to be affected by limited larval supply even several years after a disturbance event. This delay in recovery means that larvae of pioneer species may dominate potential colonists, even after benthic habitats have transitioned to conditions that favor later-successional species. Moreover, the combined effects of natural and anthropogenic disturbance (e.g. mining) would be likely to cause more profound and long-lasting changes than either event alone. Our results indicate that we do not have sufficient data to predict the timing of recovery after disturbance in the deep sea, even in a well-studied vent system.
    Description: Support was provided by National Science Foundation Grant OCE-0424953 and a Woods Hole Oceanographic Institution grant from the Deep Ocean Exploration Institute.
    Keywords: Recolonization ; Deep sea ; Hydrothermal vents ; Disturbance ecology ; Ecological succession ; Larval supply ; Larval dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 107-118, doi:10.2983/0730-8000(2008)27[107:ROGFVO]2.0.CO;2.
    Description: The gametogenic biology is described for seven species of gastropod from hydrothermal vents in the East Pacific and from the Mid-Atlantic Ridge. Species of the limpet genus Lepetodrilus (Family Lepetodrilidae) had a maximum unfertilized oocyte size of 〈90 μm and there was no evidence of reproductive periodicity or spatial variation in reproductive pattern. Individuals showed early maturity with females undergoing gametogenesis at less than one third maximum body size. There was a power relationship between shell length and fecundity, with a maximum of 1,800 oocytes being found in one individual, although individual fecundity was usually 〈1,000. Such an egg size might be indicative of planktotrophic larval development, but there was never any indication of shell growth in larvae from species in this genus. Cyathermia naticoides (Family Neomphalidea) had a maximum oocyte size of 120 μm and a fecundity of 〈400 oocytes per individual. Rhynchopelta concentrica (Family Peltospiridae) had a maximum oocyte size of 184 μm and a fecundity 〈600, whereas in Eulepetopsis vitrea (Family Neolepetopsidae) maximum oocyte size was 232 μm with a fecundity of 〈200 oocytes per individual. In none of these three species was there any indication of episodicity in oocyte production. From our observations we support the paradigm that there is no reproductive pattern typical of vent systems but is more related to species' phylogeny.
    Description: This study was carried out during the tenure of NSF grants OCE- 0243688, OCE -0118733 and OCE-9619606
    Keywords: East Pacific Rise ; Gastropod ; Reproduction ; Gametogenesis ; Hydrothermal vent ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7877-7895. doi: 10.1029/2018JC014290.
    Description: A three‐dimensional, primitive‐equation, ocean circulation model coupled with a Lagrangian particle‐tracking algorithm is used to investigate the dispersal and settlement of planktonic larvae released from discrete hydrothermal habitats on the East Pacific Rise segment at 9–10°N. Model outputs show that mean circulation is anticyclonic around the ridge segment, which consists of a northward flow along the western flank and a southward flow along the eastern flank. Those flank jets are dispersal expressways for the along‐ridge larval transport and strongly affect its overall direction and spatial‐temporal variations. It is evident from model results that the transform faults bounding the ridge segment and off axis topography (the Lamont Seamount Chain) act as topographic barriers to larval dispersal in the along‐ridge direction. Furthermore, the presence of an overlapping spreading center and an adjacent local topographic high impedes the southward along‐ridge larval transport. The model results suggest that larval recolonization within ridge‐crest habitats is enhanced by the anticyclonic circulation around the ridge segment, and the overall recolonization rate is higher for larvae having a short precompetency period and an altitude above the bottom sufficient to avoid influence by the near‐bottom currents Surprisingly, for larvae having a long precompetency period (〉10 days), the prolonged travel time allowed some of those larvae to return to their natal vent clusters, which results in an unexpected increase in connectivity among natal and neighboring sites. Overall, model‐based predictions of connectivity are highly sensitive to the larval precompetency period and vertical position in the water column.
    Description: The sediment‐trap data presented in this paper are included in Table S1. The bathymetric data used in the model can be downloaded from the Global Multi‐Resolution Topography (GMRT) Synthesis of Marine Geoscience Data System (MGDS) (https://www.gmrt.org/GMRTMapTool). The ocean current time series data used in this work were acquired in 2006‐2007 by Andreas Thurnherr at the Earth Institute of Columbia University. Those data can be accessed in the supporting information. D.J. McGillicuddy gratefully acknowledges support from the National Science Foundation and the Holger W. Jannasch and Columbus O'Donnell Iselin Shared Chairs for Excellence in Oceanography. L.S. Mullineaux acknowledges with gratitude support from the National Science Foundation and the Woods Hole Oceanographic Institution (WHOI) Ocean life fellowship. We appreciate the operation support from the Captain and crew of R/V Atlantis and the Alvin submersible group. We are thankful to V.K. Kosnyrev for developing the coupling interface between the ocean‐circulation and particle‐tracking models. We are grateful to J.W. Lavelle for his intellectual support for the modeling work presented in this paper. We thank Houshuo Jiang for sponsoring our use of the cluster computer at WHOI.
    Description: 2019-05-06
    Keywords: larva ; dispersal ; hydrothermal vent ; EPR ; connectivity ; supply
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2005. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 293 (2005): 1-16, doi:10.3354/meps293001.
    Description: We examined larval abundance patterns near deep-sea hydrothermal vents along the East Pacific Rise to investigate how physical transport processes and larval behavior may interact to influence larval dispersal from, and supply to, vent populations. We characterized vertical and lateral distributions and temporal variation of larvae of vent species using high-volume pumps that recovered larvae in good condition (some still alive) and in high numbers (up to 450 individuals sample–1). Moorings supported pumps at heights of 1, 20, and 175 m above the seafloor, and were positioned directly above and at 10s to 100s of meters away from vent communities. Sampling was conducted on 4 cruises between November 1998 and May 2000. Larvae of 22 benthic species, including gastropods, a bivalve, polychaetes, and a crab, were identified unequivocally as vent species, and 15 additional species, or species-groups, comprised larvae of probable vent origin. For most taxa, abundances decreased significantly with increasing height above bottom. When vent sites within the confines of the axial valley were considered, larval abundances were significantly higher on-vent than off, suggesting that larvae may be retained within the valley. Abundances of all vent species varied significantly among sample dates; the variation was not synchronized among taxa, except for consistently low abundances during November 1998. Lateral distributions did not vary among major larval groups (gastropods, polychaetes and bivalves), although polychaetes showed anomalously high abundances off-vent at 1 m above bottom. Lateral patterns also did not vary among species of gastropods, indicating that hydrodynamic processes may be transporting diverse species in similar ways. However, the species-level differences in temporal patterns indicate that there is substantial discontinuity in the abundance of individual species at vent communities, possibly due to timing of spawning and/or behavioral interactions with flow.
    Description: Funding was provided by NSF grants OCE-961905 and OCE-9712233 to L.S.M., a WHOI Postdoctoral fellowship through the Doherty Foundation and NSERC Discovery Grant to A.M., and a NSERC postdoctorate fellowship to H.L.H.
    Keywords: Hydrothermal vent ; East Pacific Rise ; Larva ; Dispersal ; Connectivity ; Bathymodiolus thermophilus ; Lepetodrilus
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carrier, T. J., Beaulieu, S. E., Mills, S. W., Mullineaux, L. S., & Reitzel, A. M. Larvae of deep-sea invertebrates harbor low-diversity bacterial communities. Biological Bulletin, 241(1), (2021): 65–76, https://doi.org/10.1086/715669.
    Description: Microbial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa. This understanding stems predominately from the developmental stages of coastal species. If they are broadly representative of marine invertebrates, then we may expect deep-sea species to associate with bacterial communities that are similar in diversity. To test this, we used amplicon sequencing to profile the bacterial communities of invertebrate larvae from multiple taxonomic groups (annelids, molluscs, crustaceans) collected from 2500 to 3670 m in depth in near-bottom waters near hydrothermal vents in 3 different regions of the Pacific Ocean (the East Pacific Rise, the Mariana Back-Arc, and the Pescadero Basin). We find that larvae of deep-sea invertebrates associate with low-diversity bacterial communities (~30 bacterial taxa) that lack specificity between taxonomic groups. The diversity of these communities is estimated to be ~7.9 times lower than that of coastal invertebrate larvae, but this result depends on the taxonomic group. Associating with a low-diversity community may imply that deep-sea invertebrate larvae do not have a strong reliance on a microbiome and that the hypothesized lack of symbiotic contributions would differ from expectations for larvae of coastal marine invertebrates.
    Description: TJC was supported by a National Science Foundation (NSF) Graduate Research Fellowship; SEB, SWM, and LSM were supported by NSF (OCE-0424953, OCE-1028862, and OCE-1829773) and the Dalio Explore Fund; and AMR was supported by the Human Frontier Science Program Award RGY0079/2016.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-13
    Description: This data package provides the sampling locations and identifications for macrofauna and larvae collected at the Auka hydrothermal vent field in Pescadero Basin in 2017 and used in a study by Fleming et al. (2022). This data package contains five tables: paired tables for benthic slurps (sampling metadata and specimen counts), paired tables for plankton slurps (sampling metadata and specimen counts), and one table summarizing benthic and plankton specimens with Barcode of Life Data System (BOLD) Barcode Index Numbers (BINs). The paired data tables are partially aligned to Darwin Core event and occurrence tables for future contribution to the Ocean Biodiversity Information System (OBIS). Records for specimens in BOLD are available through the Global Biodiversity Information Facility (GBIF).
    Description: Dalio Ocean Initiative and E/V Nautilus/Ocean Exploration Trust
    Keywords: Hydrothermal vent ; Benthos ; Macrofauna ; Zooplankton ; Larvae ; Remotely-operated vehicle
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...