ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-25
    Description: We describe the ocean general circulation model Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) of the Max Planck Institute for Meteorology, which forms the ocean‐sea ice component of the Earth system model ICON‐ESM. ICON‐O relies on innovative structure‐preserving finite volume numerics. We demonstrate the fundamental ability of ICON‐O to simulate key features of global ocean dynamics at both uniform and non‐uniform resolution. Two experiments are analyzed and compared with observations, one with a nearly uniform and eddy‐rich resolution of ∼10 km and another with a telescoping configuration whose resolution varies smoothly from globally ∼80 to ∼10 km in a focal region in the North Atlantic. Our results show first, that ICON‐O on the nearly uniform grid simulates an ocean circulation that compares well with observations and second, that ICON‐O in its telescope configuration is capable of reproducing the dynamics in the focal region over decadal time scales at a fraction of the computational cost of the uniform‐grid simulation. The telescopic technique offers an alternative to the established regionalization approaches. It can be used either to resolve local circulation more accurately or to represent local scales that cannot be simulated globally while remaining within a global modeling framework.
    Description: Plain Language Summary: Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) is a global ocean general circulation model that works on unstructured grids. It rests on novel numerical techniques that belong to the class of structure‐preserving finite Volume methods. Unstructured grids allow on the one hand a uniform coverage of the sphere without resolution clustering, and on the other hand they provide the freedom to intentionally cluster grid points in some region of interest. In this work we run ICON‐O on an uniform grid of approximately 10 km resolution and on a grid with four times less degrees of freedom that is stretched such that in the resulting telescoping grid within the North Atlantic the two resolutions are similar, while outside the focal area the grid approaches smoothly ∼80 km resolution. By comparison with observations and reanalysis data we show first, that the simulation on the uniform 10 km grid provides a decent mesoscale eddy rich simulation and second, that the telescoping grid is able to reproduce the mesoscale rich circulation locally in the North Atlantic and on decadal time scales. This telescoping technique of unstructured grids opens new research directions.
    Description: Key Points: We describe Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) the ocean component of ICON‐ESM 1.0, based on the ICON modeling framework. ICON‐O is analyzed in a globally mesoscale‐rich simulation and in a telescoping configuration. In telescoping configuration ICON‐O reproduces locally the eddy dynamics with less computational costs than the uniform configuration.
    Description: https://swiftbrowser.dkrz.de/public/dkrz_07387162e5cd4c81b1376bd7c648bb60/kornetal2021
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Keywords: ddc:551.46 ; ocean modeling ; ocean dynamics ; unstructured grid modeling ; local refinement ; structure preservation numerics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different ”snapshots" of the control run climate. The radiative forcing – the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A – was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the ”between-experiment" variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 71-84 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this “cold start” error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (“Business as Usual”) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45°N and 45°S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the “cold start” error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 16 (2000), S. 627-642 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 71-84 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this "cold start" error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent CO2 concentrations stipulated in Scenario A ("Business as Usual") of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45° N and 45° S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the "cold start" error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract.  The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and linearly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the intertropical convergence zone over the Atlantic is displaced southward and the westerlies in the Northern Hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface water in high-northern latitudes, which allows them to accumulate more precipitation and runoff from the continents. As a consequence the stratification in the North Atlantic becomes more stable. This effect is further amplified by an enhanced northward atmospheric water vapour transport, which increases the freshwater input into the North Atlantic. The reduced northward oceanic heat transport leads to colder sea-surface temperatures and an intensification of the atmospheric cyclonic circulation over the Norwegian Sea. The associated Ekman transports cause increased upwelling and increased freshwater export with the East Greenland Current. Both the cooling and the wind-driven circulation changes largely compensate for the effects of the first two feedbacks. The wind-stress feedback destabilizes modes without deep water formation in the North Atlantic, but has been neglected in almost all studies so far. After the meltwater input stops, the North Atlantic deepwater formation resumed in all experiments and the meridional overturning returned within 200 years to a conveyor belt pattern. This happened although the formation of North Atlantic deep water was suppressed in one experiment for more than 300 years and the Atlantic overturning had settled into a circulation pattern with Antarctic bottom water as the only source of deep water. It is a clear indication that cooling and wind-stress feedback are more effective, at least in our model, than advection feedback and increased atmospheric water vapour transport. We conclude that the conveyor belt-type thermohaline circulation seems to be much more stable than hitherto assumed from experiments with simpler models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 46 (2000), S. 257-276 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This paper discusses two aspects of climate modeling, the deep water formation in the North Atlantic and precipitation changes due to climate change caused by anthropogenic emissions of greenhouse gases. The deep water formation is strongly influenced by the precipitation, and the precipitation is affected by the concentration of the greenhouse gases in the atmosphere and by the atmospheric and oceanic circulation. The experiments discussed here have been performed independently to test the stability of the thermohaline circulation of the North Atlantic and to investigate changes in precipitation due to anthropogenic greenhouse gas emissions. The precipitation changes in a climate change environment are sufficient in some simulations to decrease the thermohaline circulation noticeably. However, it appears that the amount of freshwater needed to bring the circulation to a collapse is magnitudes larger than the anticipated change in precipitation due to anthropogenic activities within the next 100 years. The precipitation changes, on the other hand, might change regionally quite drastically towards more extreme situations, thereby putting additional stress on vegetation and enhancing soil erosion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-01
    Print ISSN: 0079-6611
    Electronic ISSN: 1873-4472
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-04-01
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...