ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-08-02
    Description: The rotation and an axial gradient of temperature drive the meridional circulation of a fluid filling a sealed cylindrical container. This numerical study explains why the flow remains stable up to the Grashof number Gr around 10 11 ; Gr characterizes the circulation strength. The shear-layer instability, occurring in a rotating pipe for small values of the Prandtl number Pr [M. A. Herrada and V. N. Shtern, “Stability of centrifugal convection in a rotating pipe,” Phys. Fluids 27 , 064106 (2015)], is suppressed here even for the cylinder length-to-radius ratio being ten. The cold end disk enhances the fluid circulation near the sidewall and diminishes it near the axis. The inflection point in the radial profile of axial velocity shifts to the sidewall vicinity where the stable centrifugal stratification and the no-slip condition prevent the disturbance growth. The cases Pr = 0, 0.015 (mercury), 0.7 (air), and 5.8 (water) are particularly analyzed. At Pr 〉 0, the stable density stratification develops and helps to suppress the disturbances. The obtained results are of fundamental interest and might be important for the development of efficient heat exchangers.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2015-06-27
    Description: This numerical study reveals that the thermal convection, induced by the axial gradient of temperature in a rotating pipe, suffers from the shear-layer instability if the Prandtl number, Pr , is small. As Pr increases, this instability is suppressed by the stable density stratification in the field of centrifugal force. In an annular pipe, the thermal instability develops for large Pr if a temperature of walls is prescribed. For a narrow annulus, these features agree with the known results for a planar flow driven by gravity and a horizontal gradient of temperature. It is shown here that the thermal instability does not develop if the walls are adiabatic. The centrifugal and Marangoni convection of a liquid, partially filling the pipe, also suffers from the shear-layer instability for small Pr and has no thermal instability. These features agree with the experiments for the planar flow performed by Kirdyashkin. The obtained results are of fundamental interest and can be relevant for the development of centrifugal heat exchangers.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-07-11
    Description: A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction W f . The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on W f . The results are of fundamental interest and can be applied for bioreactors.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...