ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Pepper ; Plastid DNA ; Restriction map ; Gene map
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chloroplasts and chromoplasts were isolated from green and red fruits, respectively, of the bell pepper, Capsicum annuum var. Emerald giant. A comparison of the restriction patterns of DNAs isolated from these plastids was made using single and double digests by SacI, PvuII, PstI, and SalI and found to be indistinguishable. It is inferred therefore that the conversion of chloroplasts to chromoplasts in Capsicum annuum does not involve any large rearrangements of the plastid chromosome. A restriction map of Capsicum annuum plastid DNA was constructed using the same restriction enzymes in single digests and in all possible pair combinations. Overlapping restriction fragments were identified by digesting each product of a single digest with each of the other three enzymes. The resulting restriction map is similar to that of chloroplast DNA from other members of the Solanaceae with respect to most restriction sites. The genome size corresponds to 143 kbp. The locations of 24 genes, coding for ribosomal RNAs and for proteins of Photosystem I (PSI), Photosystem II (PSII), ATP synthase, cytochromes, the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase (E.C. 4.1.1.29) (RuBPC), and ribosomal proteins were determined by probing Southern blots of Capsicum chloroplast DNA with probes of genes from spinach and tobacco. The gene locations are completely conserved with respect to those of other members of the Solanaceae and the majority of higher land plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: psbA ; Cyanelle ; Cyanophora paradoxa ; Evolution ; Sequence analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The psbA gene is part of the reaction center of photosystem II in cyanobacteria and the plastids of higher plants. Its primary sequence is highly conserved among all species investigated so far and its sequence shows homologies with the L and M subunits of the reaction center of photosynthetic bacteria. We have analyzed the psbA homolog from a eukaryotic alga, Cyanophora paradoxa, where the gene is encoded on cyanelle DNA. These cyanelles are surrounded by a murein sacculus and resemble cyanobacteria in many other characteristics, although they are genuine organelles that functionally replace plastids. Analysis of the gene revealed a psbA protein identical in length (360 codons) with the cyanobacterial counterpart. The overall sequence identity is, however, more pronounced between cyanelle psbA and the shorter (353 amino acids) psbA product found in higher plants. These data strongly support the postulated bridge position of cyanelles between chloroplasts and free-living cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: environmental stress ; Mesembryanthemum crystallinum ; phosphoribulokinase ; gene expression ; protein expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The expression of PRK (phosphoribulokinase, E.C.2.7.1.19) in ice plant (Mesembryanthemum crystallinum) during development and under environmental stress was studied. cDNA clones were isolated and full-length cDNAs were characterized. Ice plant PRK is contained in a 1520 nucleotide transcript including a 126 nucleotide leader sequence, a 175 nucleotide 3′-end and a 20–30 nucleotide polyA+-stretch. The coding region, 397 codons, specifies a protein of Mr 44 064. The mature sequence is preceded by a transit peptide of approximately 46 amino acids. The mature portion of ice plant PRK is 86.4% identical to that of spinach and, e.g., 16.2% identical to PRK from Xanthomonas flavus. Under salt stress or cold adaptation conditions, the amount of mRNA declined by a factor of approximately three within days, followed by an increase to approximately pre-stress levels. The fluctuation in mRNA amount is not reflected on the level of transcription of the gene, suggesting post-transcriptional control, nor is PRK protein amount affected significantly over the short stress period. The recovery of transcript levels for photosynthesis-related proteins after stress appears to be a general response to environmental stresses that affect water status in ice plant. We suggest that the photosynthetic machinery in this facultative halophyte is effectively buffered from damage caused by such environmental stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: cyanelles ; Cyanophora paradoxa ; peptidoglycan ; petH ; pre-ferredoxin-NADP+ reductase ; protein import
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone for pre-ferredoxin-NADP+ reductase (FNR) was obtained by screening a Cyanophora paradoxa expression library with antibodies specific for cyanelle FNR. The 1.4 kb transcript was derived from a single-copy gene. The precursor (41 kDa) and mature forms (34 kDa) of FNR were identified by western blotting of in vitro translation products and cyanelle extracts, respectively. The derived amino acid sequence of the mature form was corroborated by data from N-terminal protein sequencing and yielded identity scores from 58% to 62% upon comparison with cyanobacterial FNRs. Sequence conservation seemed to be even more pronounced in comparison with enzymes from higher plants, but using the neighbor joining method the C. paradoxa sequence was clearly positioned between the prokaryotic and eukaryotic sequences. The transit peptide of 65 or 66 amino acids appeared to be totally unrelated to those from spinach, pea and ice plant but showed overall characteristics of stroma-targeting peptides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: gene expression ; RNA stability regulation ; chloroplast RNA-binding protein (cRBP) ; environmental stress ; Mesembryanthemum crystallinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report the characterization of transcripts from the halophyte, Mesembryanthemum crystallinum, encoding a protein with high homology to chloroplast RNA-binding proteins (cRBP). In this plant chloroplast-related functions are largely protected against salt stress. cRBP transcripts are derived from a single gene, Mc32crbp, although three size classes of polyadenylated mRNAs are detected. Transcription rate and steady state amounts of mRNA are developmentally regulated and light controlled with strong transcriptional activity as functional chloroplasts are established, and with lower maintenance activity thereafter. Upon salt stress, the rate of transcription decreases, although transcript levels increase. Accompanying stress, a change in the distribution of transcript size classes is observed as the longest transcript with an untranslated 3′ end of 381 nucleotides increases relative to transcripts with shorter 3′ ends. The long transcript is characterized by the presence of five sequence elements in the 3′-untranslated region that are present in cRBP mRNAs from a variety of plants, although not all elements are found in each mRNA. The results may indicate a mechanism by which mRNA levels of constitutively light-regulated genes may be modulated without enhanced transcription in response to environmental cues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Ice plant ; Crassulacean acid metabolism (CAM) ; Mesembryanthemum crystallinum ; Salt stress ; Phospho(enol)pyruvate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have determined the complete nucleotide sequence of a full length cDNA encoding the Crassulacean acid metabolism (CAM) isogene of phospho(enol)pyruvate carboxylase (PEPCase). The cDNA clone, 3348 bp in length, was obtained from mRNA isolated from Mesembryanthemum crystallinum (common ice plant) which had undergone salt stress and subsequent induction of CAM. The long open reading frame encodes PEPCase (EC 4.1.1.31) with a predicted molecular mass of 110533 daltons. The deduced amino acid sequence of the ice plant PEPCase is most similar to that from maize having an amino acid identity of 74.9%. Sequence identity in corresponding regions of the PEPCase proteins from Escherichia coli and the cyanobacterium Anacystis nidulans are 41.4% and 33.5%, respectively. A compilation of the four amino acid sequences permitted the identification of phylogenetically conserved regions within the proteins which may play a role in the function of this important enzyme in plant metabolism. Gene specific probes from 3′ coding and noncoding regions of the cDNA clone used to probe genomic Southern blots established that this PEPCase gene is present in one copy in the nuclear genome of M. crystallinum. Transcripts arising from this gene increase dramatically when M. crystallinum is irrigated with 0.5 M NaCl, a stress which induces this plant to switch the primary fixation of CO2 from C3 (Calvin cycle) to CAM mode. The salt-induced mRNA encodes a PEPCase isoform which is undetectable in plants in the C3 mode as demonstrated by Northern hybridization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 224 (1990), S. 222-231 
    ISSN: 1617-4623
    Keywords: Cyanophora paradoxa ; Cyanelle ; Ribosomal protein gene ; S10-spc operon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Cyanophora paradoxa photosynthetic organelles termed cyanelles perform the functions of chloroplasts in higher plants, while the structural and biochemical characteristics of the cyanelle are essentially cyanobacterial. Our interest in studying the evolutionary relationship between cyanelles and chloroplasts led us to focus on cyanelle-encoded genes of the translational apparatus, specifically genes equivalent to those of the bacterial S10 and spc operons. The structure of a large ribosomal protein gene cluster from cyanelle DNA was characterized and compared with that from plastids and bacteria. Sequences of the following cyanelle genes encompassing 4.8 kb are reported here: 5′-rpl22-rps3-rpl16-rps17-rpl14-rpl5-rps8-rpl6-rpl18-rps5-3′. Cyanelles contain five more ribosomal protein genes than do higher plant chloroplasts and four more genes than Euglena gracilis plastids in the S10/spc region of this gene cluster. The gene encoding rpl36 is absent, in contrast to the case in other plastid DNAs. These genes, including the previously characterized genes rpl3, rpl2 and rps19, are transcribed as a primary transcript of ∼7500 nucleotides. The occurrence of transcripts smaller than this presumptive primary transcript suggests that it is processed into defined segments. Transcription terminates 3′ of rps5 where a 40 by hairpin with one mismatch (−42.2 kcal) may be folded. Immediately downstream of rps5 an open reading frame, ORF492, is contained on a separate transcript. A comparison of gene content, operon structure and deduced amino acid sequence of the genes in the S10 and spc operons from different organisms supports the notion that cyanelles are intermediary between known plastids and cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5028
    Keywords: Mesembryanthemum crystallinum ; salt stress ; reverse transcription differential display ; ribosome-inactivating protein ; diurnal expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcripts of altered abundance in RNA from unstressed and 500 mm salt-shocked Mesembryanthemum crystallinum (common ice plant) were detected by reverse-transcription differential display (RT-DD). One transcript, Rip1, was of very low abundance in unstressed plants and was strongly induced by stress. RNA blot hybridizations showed strong induction and a diurnal rhythm of transcript abundance with a maximum each day around the middle of the light phase. Rip1 encodes a reading frame of 289 amino acids (molecular mass 32652), RIP1, with homology to single-chain ribosome inactivating proteins (rRNA N-glycosidases). The deduced amino acid sequence is 31.7% identical to pokeweed antiviral protein RIP-C (overall similarity 66.5%) with highest identity in domains of documented functional importance. RT-DD also detected mRNA for pyruvate,orthophosphate dikinase (PPDK) which has already been shown to be stress-induced in the ice plant [16]. RIP1, expressed in Escherichia coli, showed rRNA N-glycosidase activity against ice plant and rabbit reticulocyte ribosomes. The induction of Rip1 coincides with the transition period during which global changes in translation lead to adaptation of the ice plant to salt stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-05-01
    Print ISSN: 0172-8083
    Electronic ISSN: 1432-0983
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-10-01
    Print ISSN: 0172-8083
    Electronic ISSN: 1432-0983
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...