ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-11-30
    Description: The most extreme ultraluminous X-ray sources (ULXs), with L X  〉 5 10 40 erg s –1 , are amongst the best candidates for hosting intermediate-mass black holes (IMBHs) in the haloes of galaxies. Jet radio emission is expected from a sub-Eddington accreting IMBH in the low/hard (radio bright) state. In a search for such IMBH jet radio emission, we have observed with the Very Large Array (VLA) at 5 GHz a sample of seven extreme ULXs whose X-ray properties indicate they are in the hard state. Assuming they remain in this state, the non-detection of radio emission for six of the target sources allows us to constrain their black hole mass to the IMBH regime, thus ruling out a supermassive black hole nature. For the extreme ULX in the galaxy NGC 2276, we detect extended radio emission formed by two lobes of total flux density 1.43 ± 0.22 mJy and size ~650 pc. The X-ray counterpart is located between the two lobes, suggesting the presence of a black hole with jet radio emission. The radio luminosity allows us to constrain the black hole mass of this source to the IMBH regime; hence, the extreme ULX in NGC 2276 could be the first detection of extended jet radio emission from an IMBH. The radio emission could also possibly come from a radio nebula powered by the ULX with a minimum total energy of 5.9 10 52 erg, thus constituting the most powerful and largest ULX radio nebula ever observed.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...