ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 9 (1990), S. 377-382 
    ISSN: 1572-9591
    Keywords: Cold fusion ; heat generated ; chemical interpretation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract It is concluded from a thermochemical analysis that the steady-state “excess heating” observed in calorimetric experiments1 is attributable to the heat of formation of liquid D2O resulting from recombination of D2 and O2 gases generated in the electrolytic cell. The recombination is catalyzed by both electrodes and the extent of the reaction increases on stirring, especially when D2 gas sparging is used for this purpose. Thermal effects of stored chemical energy, which include thermal power output exceeding electrical input in the short term and cathode meltdown from total sudden release, arise from storage of D atoms in supersaturated solid solution within the cathode volume. Their recombination to form D2 builds up high internal pressures, causing multiple fracture. Excess heat is liberated as D atoms and D2 molecules fall into deep traps created on fresh Pd surfaces, supplemented by D recombination heat. Postulation of unknown nuclear processes to account for the heat is not necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-12-01
    Print ISSN: 0164-0313
    Electronic ISSN: 1572-9591
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: As part of the space qualification effort for blue-red reflecting coverslides designed for use with GaAs solar cells, the first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with 4 types of multilayer-coated coverslides to reduce operating temperature, has produced some unexpected results. Important conclusions from this study, which includes two parallel tests, are as follows: (1) All of the GaAs solar cells with multilayer-coated coverslides display UV degradation. The laboratory data, extrapolated to 10 years in orbit, point to a significant loss mechanism from a combination of absorption and a reduction in optical match in such coatings from this portion of the space environment; (2) The effects of contamination in a vacuum system, on the measured degradation in solar-cell short-circuit current during a UV test, depend upon the type of coverslide coatings present on the coverslide surfaces. This has implications for both coated coverslides and optical solar reflectors (OSR's) in space; and (3) Because of the observed trends in this test and uncertainties in the extrapolation of data for multilayer coated coverslides, the use of any multilayer-coated coverslides for extended missions (greater than 1 year) cannot be recommended without prior flight testing.
    Keywords: Spacecraft Propulsion and Power
    Type: Space Photovoltaic Research and Technology 1995; 257-267; NASA-CP-3324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has produced some unexpected and important results. Two results, independent of the coverslide coatings, are of particular importance in terms of the predictability of GaAs solar-array lifetime in space: ( 1) The GaAs/Ge solar cells used for this series of tests displayed a much higher radiation degradation than that predicted based on JPL Solar Cell Radiation Handbook data. Covered cells degraded more in Isc than did bare cells. Short-term illumination at 60 C did not produce significant recovery (-1%) of the radiation damage. (2) However, electron radiation damage to these GaAs solar celIs anneals at 40 C when exposed to approximately 1 sun AM0 UV light sources for extended periods. The effect appears to be roughly linear with time (-1% of lsc per 1000 UVSH), is large (greater than or equal to 3%), and has not yet saturated (at 3000 hours). This photo-recovery of radiation damage to GaAs solar cells is a new effect and potentially important to the spacecraft community. The figure compares the effects of extended UV on irradiated and unirradiated GaAs solar cells with INTELSAT-6 Si cells. The effect and its generality, the extent of and conditions for photo-recovery, and the implications of such recovery for missions in radiation environments have not yet been determined.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: Six experiments at COMSAT Labs (since the early '80's) have consistently shown higher UV degradation rates for DAR coated cells when the tests are extended beyond 1000 hours. Results for degradation at 10 years, extrapolated from data at 3000 hours, exceeds 10%. Lesser degradation rates are observed for DAR coated textured cells. Data and models will be presented.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Twelfth Space Photovoltaic Research and Technology Conference (SPRAT 12); p 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...