ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: BETTII is a balloon-borne far infra-red (FIR: 30-100 m) interferometer that also uses a near-infrared (NIR: 1-2.5 m) channel for fine pointing sensing using stars. We have developed an inductive grid dichroic to divide the incoming beam into two components, by reflecting FIR light and transmitting NIR light. The dichroic is fabricated using focused electron beam technology to produce a 1 m period, 100 nm width metal grid on a sapphire substrate in order to have high reflectance for FIR wavelengths. Here we discuss the design and the detailed manufacturing process for such a dichroic. The transmission and reflectance characteristics are also presented. We discuss them in context of the BETTII requirements.
    Keywords: Astronomy; Instrumentation and Photography
    Type: GSFC-E-DAA-TN67073 , GSFC-E-DAA-TN67055 , Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX; 10708; 107083I|SPIE Astronomical Telescopes + Instrumentation; Jun 12, 2018 - Jun 14, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.
    Keywords: Optics
    Type: GSFC.CPR.5130.2011 , SPIE Society of Photo Optical Instrumentation of Engineers; Aug 21, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Solar Terrestrial Relations Observatory (STEREO) is a pair of identical satellites that will orbit the Sun so as to drift ahead of and behind Earth respectively, to give a stereo view of the Sun. STEREO is currently scheduled for launch in November 2005. One of the instrument packages that will be own on each of the STEREO spacecrafts is the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), which consists of an extreme ultraviolet imager, two coronagraphs, and two side-viewing heliospheric imagers to observe solar coronal mass ejections all the way from the Sun to Earth. We report here on the inner coronagraph, labeled COR1. COR1 is a classic Lyot internally occulting refractive coronagraph, adapted for the first time to be used in space. The field of view is from 1.3 to 4 solar radii. A linear polarizer is used to suppress scattered light, and to extract the polarized brightness signal from the solar corona. The optical scattering performance of the coronagraph was first modeled using both the ASAP and APART numerical modeling codes, and then tested at the Vacuum Tunnel Facility at the National Center for Atmospheric Research in Boulder, Colorado. In this report, we will focus on the COR1 optical design, the predicted optical performance, and the observed performance in the lab. We will also discuss the mechanical and thermal design, and the cleanliness requirements needed to achieve the optical performance.
    Keywords: Instrumentation and Photography
    Type: Proceedings of SPIE: Innovative Telescopes and Instrumentation for Solar Astrophysics (ISSN 0227-786X); 4853; 1-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: BETTII (Balloon Experimental Twin Telescope for Infra-red Interferometry) is designed to provide high angular resolution spectroscopic data in the far-infrared (FIR) wavelengths. The most significant limitation for BETTII is its sensitivity; obtaining spectral signal-to-noise ratio greater than 5 in less than 10 minutes requires sources greater than 13 Janskys (Jy). One possible way to improve the signal-to-noise ratio (SNR) for future BETTII flights is by reducing the spectral bandwidth post beam-combination. This involves using a dispersive element to spread out a polychromatic point source PSF (Point Spread Function) on the detector array, such that each pixel corresponds to a small fraction of the bandwidth. This results in a broader envelope of the interferometric fringe pattern allowing more fringes to be detected, and thereby improving the spectral SNR. Here we present the analysis and optical design of the dispersive backend, discussing the tradeoffs and how it can be combined with the existing design.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67048 , SPIE Optical and Infrared Interferometry and Imaging; Jun 12, 2018 - Jun 14, 2018; Austin, TX; United States|Proceedings of SPIE (e-ISSN 0277-786X); 10701; 107011G; 10701G-1-107011G-9|SPIE Astronomical Telescopes + Instrumentation, 2018; Jun 12, 2018 - Jun 14, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...