ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Transport properties of a pseudomorphic In(.20)Ga(.80)As/Al(.23)Ga(.77)As High Electron Mobility Transistor (HEMT) structure were measured by Hall and SdH techniques. Two samples of identical structures but with different doping levels were compared. Low temperature mobility measurements as a function of concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23 percent), large persistent photoconductivity (PPC) was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.
    Keywords: SOLID-STATE PHYSICS
    Type: Solid State Technology Branch of NASA Lewis Research Center; p 111-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: The focus of this research is to demonstrate the first full radio frequency characterization of high electron mobility transistor (HEMT) device parameters. The results of this research are used in the design of circuits with peeled HEMT devices, e.g. 10 GHz amplifiers. Devices were fabricated using two HEMT structures grown by molecular beam epitaxy methods. A 500 A AlAs release layer for 'peel off' was included under the active layers of the structure. The structures are a homogeneously doped Al(0.3)GA(0.7)As/GaAs and a delta doped square well Al(.23)Ga(.77)As/GaAs HEMT structure. Devices were fabricated using a mesa isolation process. Contacts were done by sequentially evaporating Au/Ge/Au/Ni/Au followed by rapid thermal anneal at 400 C for 15 seconds. Gates were wet etch recessed and 1 to 1.4 micron Ti/Au gate metal was deposited. Devices were peeled off the GaAs substrate using Apiezon wax to support the active layer and a HF:DI (1:10) solution to remove the AlAs separation layer. Devices were then attached to sapphire substrates using van der Waals bonding.
    Keywords: SOLID-STATE PHYSICS
    Type: Solid State Technology Branch of NASA Lewis Research Center; p 123-126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-TM-106157 , E-7843 , NAS 1.15:106157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A process to integrate epitaxial lift-off devices and microstrip circuits has been demonstrated using a pseudomorphic HEMT on an alumina substrate. The circuit was a 10 GHz amplifier with the interconnection between the device and the microstrip circuit being made with photolithographically patterned metal. The measured and modeled response correlated extremely well with a maximum gain of 6.8 dB and a return loss of -14 dB at 10.4 GHz.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: IEEE Microwave and Guided Wave Letters (ISSN 1051-8207); 3; 4; p. 107-109.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Epitaxial layers containing GaAs HEMT and P-HEMT structures have been lifted-off the GaAs substrate and attached to other host substrates using an AlAs parting layer. The devices were on-wafer RF probed before and after the lift-off step showing no degradation in the measured S-parameters. The maximum stable gain indicates a low frequency enhancement of the gain of 1-2 dB with some devices showing an enhancement of F(sub max)F(sub T) consistently shows an increase of 12-20% for all lifted-off HEMT structures. Comparison of the Hall measurements and small signal models show that the gain is improved and this is most probably associated with an enhanced carrier concentration.
    Keywords: Solid-State Physics
    Type: NASA-TM-112704 , NAS 1.15:112704 , IEEE-92-12312 , E-7324 , IEEE Transactions on Electron Devices (ISSN 0018-9383); 40; 11; 1905-1909
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...